A library for uncertainty quantification based on PyTorch

Overview

Torchuq [logo here]

TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representations for uncertainty, and around 50 different methods for uncertainty evaluation and visualization, calibration and conformal prediction.

Why TorchUQ

TorchUQ is a one-stop solution for uncertainty quantification (UQ).

Accurate uncertainty quantification (UQ) is extremely important in high-stakes applications such as autonomous driving, healthcare, and public policy --- prediction models in such applications should know what they do not know. UQ also finds numerous applications in active learning, statistical inference, or in natural science and engineering applications that are rife with sources of uncertainty.

For practitioners

Torchuq aims to provide an easy to use arsenal of uncertainty quantification methods. Torchuq is designed for the following benefits:

Plug and Play: Simple unified interface to access a large arsenal of UQ methods.

Built on PyTorch: Native GPU & auto-diff support, seamless integration with deep learning pipelines.

Documentation: Detailed tutorial to walk through popular UQ algorithms. Extensive documentation.

Extensive and Extensible: Supports calibration, conformal, multi-calibration and forecast evaluation. Easy to add new methods.

For researchers

Torchuq aims to provide a easy to use platform for conducting and distributing research on uncertainty quantification. Torchuq is designed for the following benefits:

Baseline implementation: TorchUQ provides high quality implementation of many popular baseline methods to standardize comparison.

Benchmark datasets: a large set of datasets used in recent UQ papers with a one-line interface to retrieve these datasets.

Distribute your research: you are welcome to distribute your algorithm via the TorchUQ interface. For details see [link].

Installation

First download the torchuq from pypi. To run the code, you can install the dependencies with the follwoing command

pip3 install requirements

pypi package link to come

Quickstart

import torchuq
from torchuq.evaluate import distribution 
from torchuq.transform.conformal import ConformalCalibrator 
from torchuq.dataset import create_example_regression  

In this very simple example, we create a synthetic prediction (which is a set of Gaussian distributions) and recalibrate them with conformal calibration.

predictions, labels = create_example_regression()

The example predictions are intentially incorrect (i.e. the label is not drawn from the predictions). We will recalibrate the distribution with a powerful recalibration algorithm called conformal calibration. It takes as input the predictions and the labels, and learns a recalibration map that can be applied to new data (here for illustration purposes we apply it to the original data).

calibrator = ConformalCalibrator(input_type='distribution', interpolation='linear')
calibrator.train(predictions, labels)
adjusted_predictions = calibrator(predictions)

We can plot these distribution predictions as a sequence of density functions, and the labels as the cross-shaped markers. As shown by the plot, the original predictions have systematically incorrect variance and mean, which is fixed by the recalibration algorithm.

distribution.plot_density_sequence(predictions, labels, smooth_bw=10)
distribution.plot_density_sequence(adjusted_predictions, labels, smooth_bw=10)

plot_original plot_calibrate

What's Next?

A good way to start is to read about the basic design philosophy and usage of the package, then go through these tutorials. All the tutorials are interactive jupyter notebooks. You can either download them to run locally or view them here.

Owner
TorchUQ
TorchUQ
Deep-learning X-Ray Micro-CT image enhancement, pore-network modelling and continuum modelling

EDSR modelling A Github repository for deep-learning image enhancement, pore-network and continuum modelling from X-Ray Micro-CT images. The repositor

Samuel Jackson 7 Nov 03, 2022
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
eXPeditious Data Transfer

xpdt: eXPeditious Data Transfer About xpdt is (yet another) language for defining data-types and generating code for serializing and deserializing the

Gianni Tedesco 3 Jan 06, 2022
Java and SHACL code commented in the paper "Towards compliance checking in reified I/O logic via SHACL" submitted to ICAIL 2021

shRIOL The subfolder shRIOL contains Java files to execute the SHACL files on the OWL ontology. To compile the Java files: "javac -cp ./src/;./lib/* -

1 Dec 06, 2022
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.

Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are

Sarus Technologies 39 Aug 19, 2022
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
As-ViT: Auto-scaling Vision Transformers without Training

As-ViT: Auto-scaling Vision Transformers without Training [PDF] Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, Denny Zhou In ICLR 2

VITA 68 Sep 05, 2022
TransReID: Transformer-based Object Re-Identification

TransReID: Transformer-based Object Re-Identification [arxiv] The official repository for TransReID: Transformer-based Object Re-Identification achiev

569 Dec 30, 2022
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
Tensorflow implementation of MIRNet for Low-light image enhancement

MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu

Soumik Rakshit 91 Jan 06, 2023
Low Complexity Channel estimation with Neural Network Solutions

Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con

Dianxin 10 Dec 10, 2022
Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC.

Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC. Para los Laboratorios de la materia, vamos a utilizar el len

Luis Biedma 18 Dec 12, 2022
Local-Global Stratified Transformer for Efficient Video Recognition

DualFormer This repo is the implementation of our manuscript entitled "Local-Global Stratified Transformer for Efficient Video Recognition". Our model

Sea AI Lab 19 Dec 07, 2022
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
Automatic learning-rate scheduler

AutoLRS This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published

Yuchen Jin 33 Nov 18, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
A Moonraker plug-in for real-time compensation of frame thermal expansion

Frame Expansion Compensation A Moonraker plug-in for real-time compensation of frame thermal expansion. Installation Credit to protoloft, from whom I

58 Jan 02, 2023
CVPR 2021

Smoothing the Disentangled Latent Style Space for Unsupervised Image-to-image Translation [Paper] | [Poster] | [Codes] Yahui Liu1,3, Enver Sangineto1,

Yahui Liu 37 Sep 12, 2022