The official implementation of Autoregressive Image Generation using Residual Quantization (CVPR '22)

Overview

Autoregressive Image Generation using Residual Quantization (CVPR 2022)

The official implementation of "Autoregressive Image Generation using Residual Quantization"
Doyup Lee*, Chiheon Kim*, Saehoon Kim, Minsu Cho, Wook-Shin Han (* Equal contribution)
CVPR 2022

The examples of generated images by RQ-Transformer using class conditions and text conditions.
Note that the text conditions of the examples are not used in training time.

TL;DR For autoregressive (AR) modeling of high-resolution images, we propose the two-stage framework, which consists of RQ-VAE and RQ-Transformer. Our framework can precisely approximate a feature map of an image and represent an image as a stack of discrete codes to effectively generate high-quality images.

Requirements

We have tested our codes on the environment below

  • Python 3.7.10 / Pytorch 1.9.0 / torchvision 0.10.0 / CUDA 11.1 / Ubuntu 18.04 .

Please run the following command to install the necessary dependencies

pip install -r requirements.txt

Coverage of Released Codes

  • Implementation of RQ-VAE and RQ-Transformer
  • Pretrained checkpoints of RQ-VAEs and RQ-Transformers
  • Training and evaluation pipelines of RQ-VAE
  • Image generation and its evaluation pipeline of RQ-Transformer
  • Jupyter notebook for text-to-image generation of RQ-Transformer

Pretrained Checkpoints

Checkpoints Used in the Original Paper

We provide pretrained checkpoints of RQ-VAEs and RQ-Transformers to reproduce the results in the paper. Please use the links below to download tar.gz files and unzip the pretrained checkpoints. Each link contains pretrained checkpoints of RQ-VAE and RQ-Transformer and their model configurations.

Dataset RQ-VAE & RQ-Transformer # params of RQ-Transformer FID
FFHQ link 355M 10.38
LSUN-Church link 370M 7.45
LSUN-Cat link 612M 8.64
LSUN-Bedroom link 612M 3.04
ImageNet (cIN) link 480M 15.72
ImageNet (cIN) link 821M 13.11
ImageNet (cIN) link 1.4B 11.56 (4.45)
ImageNet (cIN) link 1.4B 8.71 (3.89)
ImageNet (cIN) link 3.8B 7.55 (3.80)
CC-3M link 654M 12.33

FID scores above are measured based on original samples and generated images, and the scores in brackets are measured using 5% rejection sampling via pretrained ResNet-101. We do not provide the pipeline of rejection sampling in this repository.

(NOTE) Large-Scale RQ-Transformer for Text-to-Image Generation

We also provide the pretrained checkpoint of large-scale RQ-Transformer for text-to-image (T2I) generation. Our paper does not include the results of this large-scale RQ-Transformer for T2I generation, since we trained RQ-Transformer with 3.9B parameters on about 30 millions of text-to-image pairs from CC-3M, CC-12M, and YFCC-subset after the paper submission. Please use the link below to download the checkpoints of large-scale T2I model. We emphasize that any commercial use of our checkpoints is strictly prohibited.

Download of Pretrained RQ-Transformer on 30M text-image pairs

Dataset. RQ-VAE & RQ-Transformer # params
CC-3M + CC-12M + YFCC-subset link 3.9B

Evaluation of Large-Scale RQ-Transformer on MS-COCO

In this repository, we evaluate the pretrained RQ-Transformer with 3.9B parameters on MS-COCO. According to the evaluation protocol of DALL-Eval, we randomly select 30K text captions in val2014 split of MS-COCO and generate 256x256 images using the selected captions. We use (1024, 0.95) for top-(k, p) sampling, and FID scores of other models are from Table 2 in DALL-Eval paper.

Model # params # data Image / Grid Size FID on 2014val
X-LXMERT 228M 180K 256x256 / 8x8 37.4
DALL-E small 120M 15M 256x256 / 16x16 45.8
ruDALL-E-XL 1.3B 120M 256x256 / 32x32 18.6
minDALL-E 1.3B 15M 256x256 / 16x16 24.6
RQ-Transformer (ours) 3.9B 30M 256x256 / 8x8x4 16.9

Note that some text captions in MS-COCO are also included in the YFCC-subset, but the FIDs are not much different whether the duplicated captions are removed in the evaluation or not. See this paper for more details.

Examples of Text-to-Image (T2I) Generation using RQ-Transformer

We provide a jupyter notebook for you to easily enjoy text-to-image (T2I) generation of pretrained RQ-Transformers and the results ! After you download the pretrained checkpoints for T2I generation, open notebooks/T2I_sampling.ipynb and follows the instructions in the notebook file. We recommend to use a GPU such as NVIDIA V100 or A100, which has enough memory size over 32GB, considering the model size.

We attach some examples of T2I generation from the provided Jupyter notebook.

Examples of Generated Images from Text Conditions

a painting by Vincent Van Gogh
a painting by RENÉ MAGRITTE
Eiffel tower on a desert.
Eiffel tower on a mountain.
a painting of a cat with sunglasses in the frame.
a painting of a dog with sunglasses in the frame.

Training and Evaluation of RQ-VAE

Training of RQ-VAEs

Our implementation uses DistributedDataParallel in Pytorch for efficient training with multi-node and multi-GPU environments. Four NVIDIA A100 GPUs are used to train all RQ-VAEs in our paper. You can also adjust -nr, -np, and -nr according to your GPU setting.

  • Training 8x8x4 RQ-VAE on ImageNet 256x256 with a single node having four GPUs

    python -m torch.distributed.launch \
        --master_addr=$MASTER_ADDR \
        --master_port=$PORT \
        --nnodes=1 --nproc_per_node=4 --node_rank=0 \ 
        main_stage1.py \
        -m=configs/imagenet256/stage1/in256-rqvae-8x8x4.yaml -r=$SAVE_DIR
  • If you want to train 8x8x4 RQ-VAE on ImageNet using four nodes, where each node has one GPU, run the following scripts at each node with $RANK being the node rank (0, 1, 2, 3). Here, we assume that the master node corresponds to the node with rank 0.

    python -m torch.distributed.launch \
        --master_addr=$MASTER_ADDR \
        --master_port=$PORT \
        --nnodes=4 --nproc_per_node=1 --node_rank=$RANK \ 
        main_stage1.py \
        -m=configs/imagenet256/stage1/in256-rqvae-8x8x4.yaml -r=$SAVE_DIR

Finetuning of Pretrained RQ-VAE

  • To finetune a pretrained RQ-VAE on other datasets such as LSUNs, you have to load the pretrained checkpoints giving -l=$RQVAE_CKPT argument.
  • For example, when a pretrained RQ-VAE is finetuned on LSUN-Church, you can run the command below:
    python -m torch.distributed.launch \
        --master_addr=$MASTER_ADDR \
        --master_port=$PORT \
        --nnodes=1 --nproc_per_node=4 --node_rank=0 \ 
        main_stage1.py \
        -m=configs/lsun-church/stage1/church256-rqvae-8x8x4.yaml -r=$SAVE_DIR -l=$RQVAE_CKPT 

Evaluation of RQ-VAEs

Run compute_rfid.py to evaluate the reconstruction FID (rFID) of learned RQ-VAEs.

python compute_rfid.py --split=val --vqvae=$RQVAE_CKPT
  • The model checkpoint of RQ-VAE and its configuration yaml file have to be located in the same directory.
  • compute_rfid.py evaluates rFID of RQ-VAE on the dataset in the configuration file.
  • Adjust --batch-size as the memory size of your GPU environment.

Evaluation of RQ-Transformer

In this repository, the quantitative results in the paper can be reproduced by the codes for the evaluation of RQ-Transformer. Before the evaluation of RQ-Transformer on a dataset, the dataset has to be prepared for computing the feature vectors of its samples. To reproduce the results in the paper, we provide the statistics of feature vectors of each dataset, since extracting feature vectors accompanies computational costs and a long time. You can also prepare the datasets, which are used in our paper, as you follow the instructions of data/READMD.md.

  • Download the feature statistics of datasets as follows:
    cd assets
    wget https://arena.kakaocdn.net/brainrepo/etc/RQVAE/8b325b628f49bf60a3094fcf9419398c/fid_stats.tar.gz
    tar -zxvf fid_stats.tar.gz

FFHQ, LSUN-{Church, Bedroom, Cat}, (conditional) ImageNet

  • After the pretrained RQ-Transformer generates 50K images, FID (and IS) between the generated images and its training samples is computed.
  • You can input --save-dir to specify directory where the generated images are saved. If --save-dir is not given, the generated images are saved at the directory of the checkpoint.
  • When four GPUs in a single node are used, run the command below
    python -m torch.distributed.launch \
      --master_addr=$MASTER_ADDR \
      --master_port=$PORT \
      --nnodes=1 --nproc_per_node=4 --node_rank=0 \ 
      main_sampling_fid.py \
      -v=$RQVAE_CKPT -a=$RQTRANSFORMER_CKPT --save-dir=$SAVE_IMG_DIR

CC-3M

  • After the pretrained RQ-Transformer generates images using text captions of CC-3M validation set, FID between the validation images and generated images is computed together with CLIP score of generated images and their text conditions.
  • Evaluation of RQ-Transformer requires text prompts of cc-3m. Thus, please refer to data/READMD.md and prepare the dataset first.
  • When four GPUs in a single node are used, run the command below
    python -m torch.distributed.launch \
      --master_addr=$MASTER_ADDR \
      --master_port=$PORT \
      --nnodes=1 --nproc_per_node=4 --node_rank=0 \ 
      main_sampling_txt2img.py \
      -v=$RQVAE_CKPT -a=$RQTRANSFORMER_CKPT --dataset="cc3m" --save-dir=$SAVE_IMG_DIR

MS-COCO

  • We follow the protopocal of DALL-Eval to evaluate RQ-Transformer on MS-COCO, we use 30K samples, which are randomly selected in MS-COCO 2014val split, and provide the sampled samples as json file.
  • Evaluation of RQ-Transformer requires text prompts of MS_COCO. Thus, please refer to data/READMD.md and prepare the dataset first.
  • When four GPUs in a single node are used, run the command below
    python -m torch.distributed.launch \
      --master_addr=$MASTER_ADDR \
      --master_port=$PORT \
      --nnodes=1 --nproc_per_node=4 --node_rank=0 \ 
      main_sampling_txt2img.py \
      -v=$RQVAE_CKPT -a=$RQTRANSFORMER_CKPT --dataset="coco_2014val" --save-dir=$SAVE_IMG_DIR

NOTE

  • Unfortunately, we do not provide the training code of RQ-Transformer to avoid unexpected misuses by finetuning our checkpoints. We note that any commercial use of our checkpoints is strictly prohibited.
  • To accurately reproduce the reported results, the checkpoints of RQ-VAE and RQ-Transformer are correctly matched as described above.
  • The generated images are saved as .pkl files in the directory $DIR_SAVED_IMG.
  • For top-k and top-p sampling, the saved setting in the configuration file of pretrained checkpoints is used. If you want to use different top-(k,p) settings, use --top-k and --top-p in running the sampling scripts.
  • Once generated images are saved, compute_metrics.py can be used to evaluate the images again as follows:
python compute_metrics.py fake_path=$DIR_SAVED_IMG ref_dataset=$DATASET_NAME

Sampling speed benchmark

We provide the codes to measure the sampling speed of RQ-Transformer according to the code shape of RQ-VAEs, such as 8x8x4 or 16x16x1, as shown in Figure 4 in the paper. To reproduce the figure, run the following commands on NVIDIA A100 GPU:

# RQ-Transformer (1.4B) on 16x16x1 RQ-VAE (corresponds to VQ-GAN 1.4B model)
python -m measure_throughput f=16 d=1 c=16384 model=huge batch_size=100
python -m measure_throughput f=16 d=1 c=16384 model=huge batch_size=200
python -m measure_throughput f=16 d=1 c=16384 model=huge batch_size=500  # this will result in OOM.

# RQ-Transformer (1.4B) on 8x8x4 RQ-VAE
python -m measure_throughput f=32 d=4 c=16384 model=huge batch_size=100
python -m measure_throughput f=32 d=4 c=16384 model=huge batch_size=200
python -m measure_throughput f=32 d=4 c=16384 model=huge batch_size=500

BibTex

@article{lee2022autoregressive,
  title={Autoregressive Image Generation using Residual Quantization},
  author={Lee, Doyup and Kim, Chiheon and Kim, Saehoon and Cho, Minsu and Han, Wook-Shin},
  journal={arXiv preprint arXiv:2203.01941},
  year={2022}
}

Licenses

Contact

If you would like to collaborate with us or provide us a feedback, please contaus us,[email protected]

Acknowledgement

Our transformer-related implementation is inspired by minGPT and minDALL-E. We appreciate the authors of VQGAN for making their codes available to public.

Limitations

Since RQ-Transformer is trained on publicly available datasets, some generated images can include socially unacceptable contents according to the text conditions. When the problem occurs, please let us know the pair of "text condition" and "generated images".

Owner
Kakao Brain
Kakao Brain Corp.
Kakao Brain
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022
Official PyTorch repo for JoJoGAN: One Shot Face Stylization

JoJoGAN: One Shot Face Stylization This is the PyTorch implementation of JoJoGAN: One Shot Face Stylization. Abstract: While there have been recent ad

1.3k Dec 29, 2022
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
CVAT is free, online, interactive video and image annotation tool for computer vision

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 04, 2023
An example of time series augmentation methods with Keras

Time Series Augmentation This is a collection of time series data augmentation methods and an example use using Keras. News 2020/04/16: Repository Cre

九州大学 ヒューマンインタフェース研究室 229 Jan 02, 2023
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Hah Min Lew 1 Feb 08, 2022
Pytorch implementation of "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV 2022)

Geometrically Adaptive Dictionary Attack on Face Recognition This is the Pytorch code of our paper "Geometrically Adaptive Dictionary Attack on Face R

6 Nov 21, 2022
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
Official implementation of the paper 'Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution'

DASR Paper Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution Jie Liang, Hui Zeng, and Lei Zhang. In arxiv preprint. Abs

81 Dec 28, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
Machine Unlearning with SISA

Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N

CleverHans Lab 70 Jan 01, 2023
A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''

README.md shall be finished soon. WSSGG 0 Overview 1 Installation 1.1 Faster-RCNN 1.2 Language Parser 1.3 GloVe Embeddings 2 Settings 2.1 VG-GT-Graph

Keren Ye 35 Nov 20, 2022
Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers (arXiv2021)

Polyp-PVT by Bo Dong, Wenhai Wang, Deng-Ping Fan, Jinpeng Li, Huazhu Fu, & Ling Shao. This repo is the official implementation of "Polyp-PVT: Polyp Se

Deng-Ping Fan 102 Jan 05, 2023
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Jan 05, 2023
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 92 Jan 04, 2023
Code for the Interspeech 2021 paper "AST: Audio Spectrogram Transformer".

AST: Audio Spectrogram Transformer Introduction Citing Getting Started ESC-50 Recipe Speechcommands Recipe AudioSet Recipe Pretrained Models Contact I

Yuan Gong 603 Jan 07, 2023
Consensus score for tripadvisor

ContripScore ContripScore is essentially a score that combines an Internet platform rating and a consensus rating from sentiment analysis (For instanc

Pepe 1 Jan 13, 2022