MAGMA - a GPT-style multimodal model that can understand any combination of images and language

Related tags

Deep Learningmagma
Overview

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning

Authors

repo (alphabetical)

Constantin (CoEich), Mayukh (Mayukhdeb), Sid (sdtblck)

paper

Constantin Eichenberg, Sidney Black, Samuel Weinbach, Aleph Alpha

Letitia Parcalabescu, Anette Frank, Heidelberg University

Abstract

Large-scale pretraining is fast becoming the norm in Vision-Language (VL) modeling. However, prevailing VL approaches are limited by the requirement for labeled data and the use of complex multi-step pretraining objectives. We present MAGMA - a simple method for augmenting generative language models with additional modalities using adapter-based finetuning. Building on Frozen, we train a series of VL models that autoregressively generate text from arbitrary combinations of visual and textual input. The pretraining is entirely end-to-end using a single language modeling objective, simplifying optimization compared to previous approaches. Importantly, the language model weights remain unchanged during training, allowing for transfer of encyclopedic knowledge and in-context learning abilities from language pretraining. MAGMA outperforms Frozen on open-ended generative tasks, achieving state of the art results on the OKVQA benchmark and competitive results on a range of other popular VL benchmarks, while pretraining on 0.2% of the number of samples used to train SimVLM.

Paper on arXiv: https://arxiv.org/abs/2112.05253

Examples (via Aleph Alpha playground)

Photos Text & Technical
A man covering a woman's eyes to hide a present A hand drawn treasure map
A fallen tree is blocking a road A software architecture

Model design

MAGMA model design

About the repository

In this repository we share the main parts of the codebase for training and inference of our MAGMA VL model. The main use of the repo is for downloading our pretrained weights and interacting with the model. We include a script for data parallel training with Deepspeed for finetuning our models or training a MAGMA model from scratch.

Installation

Make sure PyTorch (Ver >= 1.9.0) and Torchvision are installed. See https://pytorch.org/get-started/locally/.

You can pip install from the git repository with:

pip install git+https://github.com/Aleph-Alpha/magma.git

Make sure that you also download the config:

mkdir configs; wget -O configs/MAGMA_v1.yml https://raw.githubusercontent.com/Aleph-Alpha/magma/add-setup/configs/MAGMA_v1.yml

Or if you've cloned the repo, you can install all further requirements by:

pip install -r requirements.txt

Checkpoint

We also publish the model checkpoint that has been used for the publication. It is hosted on our infrastructure and downloads automatically. It can be downloaded manually here: https://bit.ly/aleph_alpha_magma_download

This checkpoint can also be played around with on a space managed by Heath Mitchell, AK, and Stella Biderman. (This is a 3rd party space, not managed by Aleph Alpha.)

Loading a model for inference

Downloads the checkpoint file into checkpoint_path if it's not already present.

from magma import Magma
from magma.image_input import ImageInput

model = Magma.from_checkpoint(
    config_path = "configs/MAGMA_v1.yml",
    checkpoint_path = "./mp_rank_00_model_states.pt",
    device = 'cuda:0'
)

inputs =[
    ## supports urls and path/to/image
    ImageInput('https://www.art-prints-on-demand.com/kunst/thomas_cole/woods_hi.jpg'),
    'Describe the painting:'
]

## returns a tensor of shape: (1, 149, 4096)
embeddings = model.preprocess_inputs(inputs)  

## returns a list of length embeddings.shape[0] (batch size)
output = model.generate(
    embeddings = embeddings,
    max_steps = 6,
    temperature = 0.7,
    top_k = 0,
)  

print(output[0]) ##  A cabin on a lake

Converting datasets to our format

To convert an image-caption dataset to our dataset class magma.datasets.ImgCptDataset, we suggest:

from magma.datasets.convert_datasets import convert_dataset

def my_dataset_iterator():
    """
    Implement an iterator for your dataset that for every datapoint yields a tuple
    image_path, {"captions": [...], "metadata": {...}, }, where image_path is the path to the image as a Path object, captions is a list of caption strings and metadata is an optional field.
    """

if __name__ == "__main__":
    convert_dataset(data_dir="/target/directory", ds_iterator=my_dataset_iterator())

How to train MAGMA

Run the training with:

deepspeed train.py --config path_to_my_config

To continue training from a deepspeed checkpoint, provide the checkpoint directory in the "load" config parameter.

WARNING: By default, instantiating magma via the init method instead of from_checkpoint loads the pretrained CLIP weights but not the pretrained gpt-j weights. For training MAGMA from scratch, download the gpt-j weights from this repo: https://github.com/finetuneanon/transformers and include them in the state dict after initializing the MAGMA model.

Owner
Aleph Alpha GmbH
Aleph Alpha GmbH
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
PyTorch ,ONNX and TensorRT implementation of YOLOv4

PyTorch ,ONNX and TensorRT implementation of YOLOv4

4.2k Jan 01, 2023
Official implementation of VQ-Diffusion

Vector Quantized Diffusion Model for Text-to-Image Synthesis Overview This is the official repo for the paper: [Vector Quantized Diffusion Model for T

Microsoft 592 Jan 03, 2023
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
A unet implementation for Image semantic segmentation

Unet-pytorch a unet implementation for Image semantic segmentation 参考网上的Unet做分割的代码,做了一个针对kaggle地盐识别的,请去以下地址获取数据集: https://www.kaggle.com/c/tgs-salt-id

Rabbit 3 Jun 29, 2022
Benchmarks for Object Detection in Aerial Images

Benchmarks for Object Detection in Aerial Images

Jian Ding 691 Dec 30, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
ReSSL: Relational Self-Supervised Learning with Weak Augmentation

ReSSL: Relational Self-Supervised Learning with Weak Augmentation This repository contains PyTorch evaluation code, training code and pretrained model

mingkai 45 Oct 25, 2022
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model a

Google 3.2k Dec 31, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
Learning to Stylize Novel Views

Learning to Stylize Novel Views [Project] [Paper] Contact: Hsin-Ping Huang ([ema

34 Nov 27, 2022
Demo notebooks for Qiskit application modules demo sessions (Oct 8 & 15):

qiskit-application-modules-demo-sessions This repo hosts demo notebooks for the Qiskit application modules demo sessions hosted on Qiskit YouTube. Par

Qiskit Community 46 Nov 24, 2022
Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos Carreño 108 Dec 27, 2022
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling

You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling Transformer-based models are widely used in natural language processi

Zhanpeng Zeng 12 Jan 01, 2023
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
Repository for self-supervised landmark discovery

self-supervised-landmarks Repository for self-supervised landmark discovery Requirements pytorch pynrrd (for 3d images) Usage The use of this models i

Riddhish Bhalodia 2 Apr 18, 2022
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022