(under submission) Bayesian Integration of a Generative Prior for Image Restoration

Overview

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration

Authors: Majed El Helou, and Sabine Süsstrunk

Python 3.7 pytorch 1.1.0 CUDA 10.1

{Note: paper under submission}

BIGPrior pipeline

The figure below illustrates the BIGPrior pipeline, with a generative-network inversion for the learned prior.

[Paper]

Abstract: Image restoration, such as denoising, inpainting, colorization, etc. encompasses fundamental image processing tasks that have been addressed with different algorithms and deep learning methods. Classical image restoration algorithms leverage a variety of priors, either implicitly or explicitly. Their priors are hand-designed and their corresponding weights are heuristically assigned. Thus, deep learning methods often produce superior image restoration quality. Deep networks are, however, capable of strong and hardly-predictable hallucinations of the data to be restored. Networks jointly and implicitly learn to be faithful to the observed data while learning an image prior, and the separation of original data and hallucinated data downstream is then not possible. This limits their wide-spread adoption in image restoration applications. Furthermore, it is often the hallucinated part that is victim to degradation-model overfitting.

We present an approach with decoupled network-prior based hallucination and data fidelity terms. We refer to our framework as the Bayesian Integration of a Generative Prior (BIGPrior). Our BIGPrior method is rooted in a Bayesian restoration framework, and tightly connected to classical restoration methods. In fact, our approach can be viewed as a generalization of a large family of classical restoration algorithms. We leverage a recent network inversion method to extract image prior information from a generative network. We show on image colorization, inpainting, and denoising that our framework consistently improves the prior results through good integration of data fidelity. Our method, though partly reliant on the quality of the generative network inversion, is competitive with state-of-the-art supervised and task-specific restoration methods. It also provides an additional metric that sets forth the degree of prior reliance per pixel. Indeed, the per pixel contributions of the decoupled data fidelity and prior terms are readily available in our proposed framework.

Key take-aways: our paper presents a learning-based restoration framework that forms a generalization of various families of classical methods. It is both tightly connected with Bayesian estimation upon which it builds, and also to classical dictionary methods. Our BIGPrior makes the explicit integration of learned-network priors possible, notably a generative-network prior. Its biggest advantage is that, by decoupling data fidelity and prior hallucination, it structurally provides a per pixel fusion metric that determines the contribution of each. This can be important both for end users and for various downstream applications. We hope this work will foster future learning methods with clearly decoupled network hallucinations, both for interpretability, reliability, and to safeguard against the hazards of black-box restoration.

Structure overview

All code is in the code directory, and input data are in the data folder. The net_data directory stores the network weights per epoch (along with many other trackers and all experiment parameters), it uses an automated index incrementation strategy on top of the experiment name for avoiding over-writing. We generate a lot of intermediate data for the different experiments, and along with the final outputs, these are written in inter_data.

Data setup

The needed data are already stored under data, if you want to repeat our experiments with different datasets we added a help README under data/lsun/ explaining how to pre-process the lsun data.

Generative inversion

The generative inversion we use is based on mGAN but we do some modifications to their code, which is why we have our own version in this repository.

(1) You need to download the pre-trained generative networks (we use PGGAN), and put the pretrain folder inside code/mganprior/models/. You can download them from the original repo, or mGAN's, or from our link right here.

(2) (recommended) You might face some bugs with the perceptual vgg-based loss due to caching, if you run parallel experiments or if you run on remote servers. We recommend you cache the pretrained model. To do this, first download vgg model vgg16-397923af.pth and paste it inside cache/torch/checkpoints/, then before starting an experiment run:

export XDG_CACHE_HOME=cache/

(3) We compiled the commands for all experiments in the bash file runall_mGAN.sh, you can find the templates inside to rerun each experiment.

Training

The train_cnn.sh bash compiles the commands to retrain all our experiments, for instance for colorization:

python code/train.py --experiment col_bedroom --lr 0.01 --batch_size 8 --backbone D --phi_weight 1e-5

the experiment name is parsed in 2 to determine the task and the dataset, the remaining args control the network or training parameters. All are detailed in code/train.py.

If you retrain multiple times for a given experiment, every run is saved with an incremented ID starting from 0, and the corresponding parameters are also saved as OURargs.txt next to the network checkpoints.

Testing

The test_cnn.sh bash compiles the commands to test all our experiments, for instance for colorization:

python code/train.py --experiment col_bedroom --test_model 1 --test True --test_epoch 24

where the test_model argument selects the ID of the already-trained experiment. The arguments of the chosen experiments are also saved under inter_data/{experiment}/OURoutput/OURargs.txt because, unlike network weights, the image outputs get over-written with every new run. This is because their computation is fast but they take a lot of storage.

Note: our pretrained models are already available within this repo under net_data (epoch 25 only, i.e. ID 24), so if you want to test without retraining it can be done directly.

Results visualization

We group all results processing, visualization, quantitative assessment, also including our correlation analysis figure, in one comprehensive notebook. It contains a large number of control parameters to obtain all the different table results, and more.

Citation

@article{elhelou2020bigprior,
    title   = {{BIGPrior}: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration},
    author  = {El Helou, Majed and S\"usstrunk, Sabine},
    journal = {arXiv preprint arXiv:2011.01406},
    year    = {2020}
}
Owner
Majed El Helou
CS PhD student, EPFL
Majed El Helou
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
Intelligent Video Analytics toolkit based on different inference backends.

English | 中文 OpenIVA OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help

Quantum Liu 15 Oct 27, 2022
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

Kyon Huang 223 Dec 16, 2022
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Nikita 12 Dec 14, 2022
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers

Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers This is an implementation of A Physics-Informed Vector Quantized Autoencoder for Dat

DreamSoul 3 Sep 12, 2022
StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN

StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN This is the PyTorch implementation of StyleGAN of All Trades: Image Manipulati

360 Dec 28, 2022
The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Prior-Enhanced network with Meta-Prototypes (PEMP) This is the PyTorch implementation of PEMP. Overview of PEMP Meta-Prototypes & Adaptive Prototypes

Jianwei ZHANG 8 Oct 14, 2021
Code for Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021)

Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021) Hang Zhou, Yasheng Sun, Wayne Wu, Chen Cha

Hang_Zhou 628 Dec 28, 2022
Stream images from a connected camera over MQTT, view using Streamlit, record to file and sqlite

mqtt-camera-streamer Summary: Publish frames from a connected camera or MJPEG/RTSP stream to an MQTT topic, and view the feed in a browser on another

Robin Cole 183 Dec 16, 2022
Fast (simple) spectral synthesis and emission-line fitting of DESI spectra.

FastSpecFit Introduction This repository contains code and documentation to perform fast, simple spectral synthesis and emission-line fitting of DESI

5 Aug 02, 2022
SBINN: Systems-biology informed neural network

SBINN: Systems-biology informed neural network The source code for the paper M. Daneker, Z. Zhang, G. E. Karniadakis, & L. Lu. Systems biology: Identi

Lu Group 15 Nov 19, 2022
BERT model training impelmentation using 1024 A100 GPUs for MLPerf Training v1.1

Pre-trained checkpoint and bert config json file Location of checkpoint and bert config json file This MLCommons members Google Drive location contain

SAIT (Samsung Advanced Institute of Technology) 12 Apr 27, 2022
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

232 Dec 25, 2022
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities

ORB-SLAM2 Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2) 13 Jan 2017: OpenCV 3 and Eigen 3.3 are now suppor

Raul Mur-Artal 7.8k Dec 30, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
Data reduction pipeline for KOALA on the AAT.

KOALA KOALA, the Kilofibre Optical AAT Lenslet Array, is a wide-field, high efficiency, integral field unit used by the AAOmega spectrograph on the 3.

4 Sep 26, 2022