Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

Related tags

Deep LearningDAGSurv
Overview

DAGSurv

Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a parametric probabilistic function of fully or partially observed covariates. All the existing technique for survival analysis assume that the covariates are statistically independent. To integrate the cause-effect relationship between covariates and the time-to-event outcome, we present to you DAGSurv which encodes the causal DAG structure into the analysis of temporal data and eventually leads to better results (higher Concordance Index).

plot

Dependencies

This code requires the following key dependencies:

  • Python 3.8
  • torch==1.6.0
  • pycox==0.2.1

Usage

To train the DAGSurv model, please run the main.py as python main.py

There are a number of hyper-parameters present in the script which can be easily changed.

Experiments

We evaluated our approach on two real-world and two synthetic datasets; and used time-dependent Concordance Index(C-td) as our evaluation metric.

Real-World Datasets

  • METABRIC : The Molecular Taxonomy of Breast Cancer International Consor- tium (METABRIC) is a clinical dataset which consists of gene expressions used to determine different subgroups of breast cancer. We consider the data for 1,904 patients with each patient having 9 covariates. Furthermore, out of the total 1,904 patients, 801 (42.06%) are right-censored, and the rest are deceased (event).
  • GBSG : Rotterdam and German Breast Cancer Study Group (GBSG) contains breast-cancer data from Rotterdam Tumor bank. The dataset consists of 2,232 patients out of which 965 (43.23%) are right-censored, remaining are deceased (event), and there were no missing values. In total, there were 7 features per patient.

Time-Dependent Concordance Index(C-td)

We employ the time-dependent concordance index (CI) as our evaluation metric since it is robust to changes in the survival risk over time. Mathematically it is given as,

plot

Results

Here, we present our results on the two real-world datasets mentioned above -

Model/Experiment METABRIC GBSG
DAGSurv 0.7323 ± 0.0056 0.6892 ± 0.0023
DeepHit 0.7309 ± 0.0047 0.6602 ± 0.0026
DeepSurv 0.6575 ± 0.0021 0.6651 ± 0.0020
CoxTime 0.6679 ± 0.0020 0.6687 ± 0.0019

Code References

[1] Yue Yu, Jie Chen, Tian Gao, Mo Yu. "DAG-GNN: DAG Structure Learning with Graph Neural Networks."
[2] Changhee Lee, William R. Zame, Jinsung Yoon, Mihaela van der Schaar. "DeepHit: A Deep Learning Approach to Survival Analysis with Competing Risks."

Owner
Rahul Kukreja
Rahul Kukreja
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Hesper 63 Jan 05, 2023
Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs

Context-Aware-Healthcare Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs Download

LuChang 9 Dec 26, 2022
Assginment for UofT CSC420: Intro to Image Understanding

Run the code Open edge_detection.ipynb in google colab. Upload image1.jpg,image2.jpg and my_image.jpg to '/content/drive/My Drive'. chooose 'Run all'

Ziyi-Zhou 1 Feb 24, 2022
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN Pytorch implementation Inception score evaluation StackGAN-v2-pytorch Tensorflow implementation for reproducing main results in the paper Sta

Han Zhang 1.8k Dec 21, 2022
[CVPR 2022 Oral] MixFormer: End-to-End Tracking with Iterative Mixed Attention

MixFormer The official implementation of the CVPR 2022 paper MixFormer: End-to-End Tracking with Iterative Mixed Attention [Models and Raw results] (G

Multimedia Computing Group, Nanjing University 235 Jan 03, 2023
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting

Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas

Guillaume Chevalier 1k Dec 25, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
Intelligent Video Analytics toolkit based on different inference backends.

English | 中文 OpenIVA OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help

Quantum Liu 15 Oct 27, 2022
Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFlow 2

DreamerPro Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFl

22 Nov 01, 2022
Code for our paper Aspect Sentiment Quad Prediction as Paraphrase Generation in EMNLP 2021.

Aspect Sentiment Quad Prediction (ASQP) This repo contains the annotated data and code for our paper Aspect Sentiment Quad Prediction as Paraphrase Ge

Isaac 39 Dec 11, 2022
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
Cognate Detection Repository

Cognate Detection Repository Details This repository contains the data for two publications: Challenge Dataset of Cognates and False Friend Pairs from

Diptesh Kanojia 1 Apr 26, 2022
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
robomimic: A Modular Framework for Robot Learning from Demonstration

robomimic [Homepage]   [Documentation]   [Study Paper]   [Study Website]   [ARISE Initiative] Latest Updates [08/09/2021] v0.1.0: Initial code and pap

ARISE Initiative 178 Jan 05, 2023
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022
YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

YOLOv5-Paddle YOLOv5 🚀 reproduction by Guo Quanhao using PaddlePaddle 支持AutoBatch 支持AutoAnchor 支持GPU Memory 快速开始 使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePa

QuanHao Guo 20 Nov 14, 2022
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"

SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe

Wei Jin 85 Oct 13, 2022