Material del curso IIC2233 Programación Avanzada 📚

Overview

Contenidos

Los contenidos se organizan según la semana del semestre en que nos encontremos, y según la semana que se destina para su estudio. Los contenidos se subirán en paquetes de una o varias semanas seguidas, pero para una semana dada, solo es necesario estudiar los contenidos de dicha semana, y no las semanas posteriores incluidas en el paquete.

Los contenidos se pondrán en práctica mediante actividades (formativas o sumativas). El contenido de las actividades es acumulativo, así que la materia vista en semanas anteriores también puede entrar en las actividades posteriores, pero tendrán foco sobre solo uno de los contenidos semanales.

La semana 0 corresponde a la primera semana de clases, en la cual no habrá una actividad de contenidos, sino que una introducción al formato del curso. La carpeta semana 0 de todas formas contiene material de estudio que se asumirá conocido y se aplicará durante todo el curso, y específicamente se evaluará en la primera tarea del curso (T0), en lugar de en una actividad.

La numeración de semanas que siguen, respeta el orden temporal del calendario académico, por lo que la semana 9 es saltada debido a la Semana de Receso a nivel UC, mientras que la semana 10 se dejará como repaso con actividades/contenido por definir.

La siguiente tabla muestra la correspondencia de actividades y los contenidos semanales:

Actividad Tipo Semana de contenido Contenido
- - Semana 0 Introducción al curso
AF1 Formativa Semana 1 Estructuras de datos built-ins
AF2 Formativa Semana 2 Programación orientada a objetos I
AS1 Sumativa Semana 3 Programación orientada a objetos II
- - Semana 4 Excepciones
- - Semana 5 -
AS2 Sumativa Semana 6 Threading
- - Semana 7 Interfaces gráficas I
AS3 Sumativa Semana 8 Interfaces gráficas II
- - Semana 9 I/O y Serialización
AF3 Formativa Semana 10 Networking
- - Semana 11 Estructuras nodales I
AS4 Formativa Semana 12 Estructuras nodales II
AF4 - Semana 13 Iterables
- - Semana 14 Material bonus

Si tienes dudas sobre el contenido puedes abrir una issue aquí.

Preguntas frecuentes

  1. Yo abro los notebooks, hago cambios para ver como funcionan, y a la semana siguiente al hacer git pull me sale un error que dice "Your local changes to the following files would be overwritten by merge" ¿Qué puedo hacer?

    1. Siempre puedes clonar el repositorio otra vez, pero no es la idea. Lo que debes hacer es guardar tus cambios en alguna parte, hacer pull, y luego volver a aplicar tus cambios. Para eso coloca los siguientes comandos:
    git stash     # Guarda los cambios hechos en otra parte. Desaparecen del working directory.
    git pull      # El pull que queríamos hacer en un principio.
    git stash pop # Regresa los cambios hechos por ti al working directory.
Owner
IIC2233 @ UC
IIC2233 Programación Avanzada @ Pontificia Universidad Católica de Chile
IIC2233 @ UC
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
Beyond imagenet attack (accepted by ICLR 2022) towards crafting adversarial examples for black-box domains.

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection

SAGA Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection Please refer to the Jupyter notebook (Example.ipynb) for an example of using t

9 Dec 28, 2022
Automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure

fwhr-calc-website This project is to automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azur

SoohyunPark 1 Feb 07, 2022
Misc YOLOL scripts for use in the Starbase space sandbox videogame

starbase-misc Misc YOLOL scripts for use in the Starbase space sandbox videogame. Each directory contains standalone YOLOL scripts. They don't really

4 Oct 17, 2021
Pipeline code for Sequential-GAM(Genome Architecture Mapping).

Sequential-GAM Pipeline code for Sequential-GAM(Genome Architecture Mapping). mapping whole_preprocess.sh include the whole processing of mapping. usa

3 Nov 03, 2022
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022
Official Pytorch implementation of the paper: "Locally Shifted Attention With Early Global Integration"

Locally-Shifted-Attention-With-Early-Global-Integration Pretrained models You can download all the models from here. Training Imagenet python -m torch

Shelly Sheynin 14 Apr 15, 2022
[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

MMChat This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media. Dataset MMChat is a large-scale d

Silver 47 Jan 03, 2023
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt

Paul Gavrikov 18 Dec 30, 2022
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
TianyuQi 10 Dec 11, 2022
🏃‍♀️ A curated list about human motion capture, analysis and synthesis.

Awesome Human Motion 🏃‍♀️ A curated list about human motion capture, analysis and synthesis. Contents Introduction Human Models Datasets Data Process

Dennis Wittchen 274 Dec 14, 2022
General purpose Slater-Koster tight-binding code for electronic structure calculations

tight-binder Introduction General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code

9 Dec 15, 2022
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023