The Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Related tags

Deep LearningFSB
Overview

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

This repository includes the dataset, experiments results, and code for the paper:

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems PDF.

Authors: Andrea Madotto, Zhaojiang Lin, Genta Indra Winata, Pascale Fung

Abstract

Learning to converse using only a few examples is a grand challenge in Conversational AI. The current best conversational models, which are either good chit-chatters (e.g., BlenderBot) or goal-oriented systems (e.g., MinTL), are language models (LMs) fine-tuned on large conversational datasets. Training these models is expensive, both in terms of computational resources and time, and it is hard to keep these models up to date with new conversational skills. A simple yet unexplored solution is prompt-based few-shot learning (Brown et al. 2020) which does not require gradient-based fine-tuning but instead uses a few examples in the LM context as the only source of learning. In this paper, we explore prompt-based few-shot learning in dialogue tasks. We benchmark LMs of different sizes in 9 response generation tasks, which include a variety of knowledge-grounded tasks, task-oriented generations, general open-chat, and controlled stylistic generation, and 5 conversational parsing tasks, which include dialogue state tracking, graph path generation, persona information extraction, and document retrieval. The current largest, released, LM (GPT-J-6B) achieves competitive performance to full-training state-of-the-art models by using the prompt-based few-shot learning, thus no training. Moreover, we proposed a novel perplexity-based classifier, that also does not require any fine-tuning, to select the most appropriate prompt given a dialogue history, as to create an all-in-one model with multiple dialogue skills. Finally, by combining the power of prompt-based few-shot learning and the skill selector, we create an end-to-end chatbot named the Few-Shot Bot, which automatically selects the most appropriate conversational skill, queries different KBs or the internet, and uses it to generate a human-like response, all by using only one dialogue example per skill.

Installation

In this repo, we load all the validation and test sets used in the evaluation. For running the experiments and the demo, you should install the following requirements:

pip install -r requirements.txt

Basic Running

Reproducing the results and plots

The generation folder stores the generated responses of the experiments in all datasets. To generate the tables and the plots in the paper, run

python generate_plots_tables.py

This script loads all the files and computes the mean between different runs and it generates the plots. Note that this script is very custum for each datasets, but it can serve as guide line for future extentions.

Running the experiments

There are three main files to run 1) response generation (main_response_generation.py), 2) conversational parsing (main_conversational_parsing.py), and 3) skill-selector (main_skill_selector.py). In these files, we load the necessary prompt (load_prefix) and we run the generation (generate_response) for each sample in the test set. Since each dialogue skill require a different template, as shown in the paper, we create a function that converts structured data into the correct shot prompt. An example of this function can be found in prompts/persona_chat.py, and in generic_prompts.py we store the generation functions.

In each main file there is configuration object (mapper) which specify meta-information about the task (i.e., number of shots, generation length, decoding type, prompt converter). Expecially for conversational parsing, there are different decoding type. For example, in MWOZ the model generates the dialogue state, which is further looped into the next turn.

How to run?

For example, to run the persona chat experiments (0, 1, k-shots), you can use the following command:

python main_response_generation.py --model_checkpoint EleutherAI/gpt-j-6B --dataset persona --gpu 0

In case your GPU has less that 16GB, then you could add --multigpu to spawn 4 GPUs (e.g., 1080Ti) and do inference in parallel. Similarly, for conversational parsing tasks, you could use:

python main_conversational_parsing.py --model_checkpoint EleutherAI/gpt-j-6B --dataset wow-parse --gpu 0

Notice that some parsing task requires a knowledge base (e.g., dialKG-parse requires the KG in neo4j). Finally, to run the skill-selector task, you could use:

python main_skill_selector.py --model_checkpoint EleutherAI/gpt-j-6B --shots_k 6 --repetition 1 --gpu 0

where repetition is the seed for selecting random samples in the prompts.

Runners

In the runners folder, we provide a rudimental runner to run all the experiments and reproduce the results in the paper.

Few-Shot Bot

There are two modes for the FSB such as 1) controlled style generation and 2) full-model. Currently we support the controlled style generation model. Check the FSB-CG.ipynb to try to interact with FSB in your local machine, or try directly in colab at https://colab.research.google.com/drive/15hQv1V3Cs5kQVfLOE_FZc1VCWQ3YpWVd?usp=sharing (Remeber to select the enviroment with GPU).

Owner
Andrea Madotto
Deep learning, Machine Learning, Learning To Learn, Natural Language Processing.
Andrea Madotto
Continual reinforcement learning baselines: experiment specifications, implementation of existing methods, and common metrics. Easily extensible to new methods.

Continual Reinforcement Learning This repository provides a simple way to run continual reinforcement learning experiments in PyTorch, including evalu

55 Dec 24, 2022
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

5 Nov 21, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

LancoPKU 105 Jan 03, 2023
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.

You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient (paper) @misc{zhang2021compress,

46 Dec 07, 2022
Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Bo Sun 132 Nov 28, 2022
PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric (ICCV 2021)

PrimitiveNet Source code for the paper: Jingwei Huang, Yanfeng Zhang, Mingwei Sun. [PrimitiveNet: Primitive Instance Segmentation with Local Primitive

Jingwei Huang 47 Dec 06, 2022
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

5 Jan 04, 2023
This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX

The goal of Project CodeNet is to provide the AI-for-Code research community with a large scale, diverse, and high quality curated dataset to drive innovation in AI techniques.

International Business Machines 1.2k Jan 04, 2023
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
Minecraft Hack Detection With Python

Minecraft Hack Detection An attempt to try and use crowd sourced replays to find

Kuleen Sasse 3 Mar 26, 2022
Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

Pawan Valluri 5 Nov 28, 2022
Object Detection with YOLOv3

Object Detection with YOLOv3 Bu projede YOLOv3-608 modeli kullanılmıştır. Requirements Python 3.8 OpenCV Numpy Documentation Yolo ile ilgili detaylı b

Ayşe Konuş 0 Mar 27, 2022
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Vince 0 Jul 13, 2021
Scikit-learn compatible estimation of general graphical models

skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships

213 Jan 02, 2023
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022