The Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Related tags

Deep LearningFSB
Overview

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

This repository includes the dataset, experiments results, and code for the paper:

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems PDF.

Authors: Andrea Madotto, Zhaojiang Lin, Genta Indra Winata, Pascale Fung

Abstract

Learning to converse using only a few examples is a grand challenge in Conversational AI. The current best conversational models, which are either good chit-chatters (e.g., BlenderBot) or goal-oriented systems (e.g., MinTL), are language models (LMs) fine-tuned on large conversational datasets. Training these models is expensive, both in terms of computational resources and time, and it is hard to keep these models up to date with new conversational skills. A simple yet unexplored solution is prompt-based few-shot learning (Brown et al. 2020) which does not require gradient-based fine-tuning but instead uses a few examples in the LM context as the only source of learning. In this paper, we explore prompt-based few-shot learning in dialogue tasks. We benchmark LMs of different sizes in 9 response generation tasks, which include a variety of knowledge-grounded tasks, task-oriented generations, general open-chat, and controlled stylistic generation, and 5 conversational parsing tasks, which include dialogue state tracking, graph path generation, persona information extraction, and document retrieval. The current largest, released, LM (GPT-J-6B) achieves competitive performance to full-training state-of-the-art models by using the prompt-based few-shot learning, thus no training. Moreover, we proposed a novel perplexity-based classifier, that also does not require any fine-tuning, to select the most appropriate prompt given a dialogue history, as to create an all-in-one model with multiple dialogue skills. Finally, by combining the power of prompt-based few-shot learning and the skill selector, we create an end-to-end chatbot named the Few-Shot Bot, which automatically selects the most appropriate conversational skill, queries different KBs or the internet, and uses it to generate a human-like response, all by using only one dialogue example per skill.

Installation

In this repo, we load all the validation and test sets used in the evaluation. For running the experiments and the demo, you should install the following requirements:

pip install -r requirements.txt

Basic Running

Reproducing the results and plots

The generation folder stores the generated responses of the experiments in all datasets. To generate the tables and the plots in the paper, run

python generate_plots_tables.py

This script loads all the files and computes the mean between different runs and it generates the plots. Note that this script is very custum for each datasets, but it can serve as guide line for future extentions.

Running the experiments

There are three main files to run 1) response generation (main_response_generation.py), 2) conversational parsing (main_conversational_parsing.py), and 3) skill-selector (main_skill_selector.py). In these files, we load the necessary prompt (load_prefix) and we run the generation (generate_response) for each sample in the test set. Since each dialogue skill require a different template, as shown in the paper, we create a function that converts structured data into the correct shot prompt. An example of this function can be found in prompts/persona_chat.py, and in generic_prompts.py we store the generation functions.

In each main file there is configuration object (mapper) which specify meta-information about the task (i.e., number of shots, generation length, decoding type, prompt converter). Expecially for conversational parsing, there are different decoding type. For example, in MWOZ the model generates the dialogue state, which is further looped into the next turn.

How to run?

For example, to run the persona chat experiments (0, 1, k-shots), you can use the following command:

python main_response_generation.py --model_checkpoint EleutherAI/gpt-j-6B --dataset persona --gpu 0

In case your GPU has less that 16GB, then you could add --multigpu to spawn 4 GPUs (e.g., 1080Ti) and do inference in parallel. Similarly, for conversational parsing tasks, you could use:

python main_conversational_parsing.py --model_checkpoint EleutherAI/gpt-j-6B --dataset wow-parse --gpu 0

Notice that some parsing task requires a knowledge base (e.g., dialKG-parse requires the KG in neo4j). Finally, to run the skill-selector task, you could use:

python main_skill_selector.py --model_checkpoint EleutherAI/gpt-j-6B --shots_k 6 --repetition 1 --gpu 0

where repetition is the seed for selecting random samples in the prompts.

Runners

In the runners folder, we provide a rudimental runner to run all the experiments and reproduce the results in the paper.

Few-Shot Bot

There are two modes for the FSB such as 1) controlled style generation and 2) full-model. Currently we support the controlled style generation model. Check the FSB-CG.ipynb to try to interact with FSB in your local machine, or try directly in colab at https://colab.research.google.com/drive/15hQv1V3Cs5kQVfLOE_FZc1VCWQ3YpWVd?usp=sharing (Remeber to select the enviroment with GPU).

Owner
Andrea Madotto
Deep learning, Machine Learning, Learning To Learn, Natural Language Processing.
Andrea Madotto
Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021.

PHDimGeneralization Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021. Overvie

Tolga Birdal 13 Nov 08, 2022
A3C LSTM Atari with Pytorch plus A3G design

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C

David Griffis 532 Jan 02, 2023
NeuPy is a Tensorflow based python library for prototyping and building neural networks

NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin

Yurii Shevchuk 729 Jan 03, 2023
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

Ritvik Rastogi 60 May 29, 2022
The project is an official implementation of our CVPR2019 paper "Deep High-Resolution Representation Learning for Human Pose Estimation"

Deep High-Resolution Representation Learning for Human Pose Estimation (CVPR 2019) News [2020/07/05] A very nice blog from Towards Data Science introd

Leo Xiao 3.9k Jan 05, 2023
SPEAR: Semi suPErvised dAta progRamming

Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem

decile-team 91 Dec 06, 2022
EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Gender Bangs Body Side Pose (Yaw) Lighting Smile Face Shape Lipstick Color Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate Flush & Eye Color Mout

Zhenliang He 321 Dec 01, 2022
A PyTorch implementation of PointRend: Image Segmentation as Rendering

PointRend A PyTorch implementation of PointRend: Image Segmentation as Rendering [arxiv] [Official Implementation: Detectron2] This repo for Only Sema

AhnDW 336 Dec 26, 2022
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022
Adversarial Self-Defense for Cycle-Consistent GANs

Adversarial Self-Defense for Cycle-Consistent GANs This is the official implementation of the CycleGAN robust to self-adversarial attacks used in pape

Dina Bashkirova 10 Oct 10, 2022
Human segmentation models, training/inference code, and trained weights, implemented in PyTorch

Human-Segmentation-PyTorch Human segmentation models, training/inference code, and trained weights, implemented in PyTorch. Supported networks UNet: b

Thuy Ng 474 Dec 19, 2022
Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection

CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme

Yichun Shen 41 Dec 08, 2022
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 06, 2023
Application of the L2HMC algorithm to simulations in lattice QCD.

l2hmc-qcd 📊 Slides Recent talk on Training Topological Samplers for Lattice Gauge Theory from the Machine Learning for High Energy Physics, on and of

Sam Foreman 37 Dec 14, 2022
Instance-based label smoothing for improving deep neural networks generalization and calibration

Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc

Mohamed Maher 1 Aug 13, 2022
Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries

Dictionary Learning for Clustering on Hyperspectral Images Overview Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionari

Joshua Bruton 6 Oct 25, 2022
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023
Hardware-accelerated DNN model inference ROS2 packages using NVIDIA Triton/TensorRT for both Jetson and x86_64 with CUDA-capable GPU

Isaac ROS DNN Inference Overview This repository provides two NVIDIA GPU-accelerated ROS2 nodes that perform deep learning inference using custom mode

NVIDIA Isaac ROS 62 Dec 14, 2022