Tensorflow implementation of Character-Aware Neural Language Models.

Overview

Character-Aware Neural Language Models

Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found here.

model.png

This implementation contains:

  1. Word-level and Character-level Convolutional Neural Network
  2. Highway Network
  3. Recurrent Neural Network Language Model

The current implementation has a performance issue. See #3.

Prerequisites

Usage

To train a model with ptb dataset:

$ python main.py --dataset ptb

To test an existing model:

$ python main.py --dataset ptb --forward_only True

To see all training options, run:

$ python main.py --help

which will print

usage: main.py [-h] [--epoch EPOCH] [--word_embed_dim WORD_EMBED_DIM]
              [--char_embed_dim CHAR_EMBED_DIM]
              [--max_word_length MAX_WORD_LENGTH] [--batch_size BATCH_SIZE]
              [--seq_length SEQ_LENGTH] [--learning_rate LEARNING_RATE]
              [--decay DECAY] [--dropout_prob DROPOUT_PROB]
              [--feature_maps FEATURE_MAPS] [--kernels KERNELS]
              [--model MODEL] [--data_dir DATA_DIR] [--dataset DATASET]
              [--checkpoint_dir CHECKPOINT_DIR]
              [--forward_only [FORWARD_ONLY]] [--noforward_only]
              [--use_char [USE_CHAR]] [--nouse_char] [--use_word [USE_WORD]]
              [--nouse_word]

optional arguments:
  -h, --help            show this help message and exit
  --epoch EPOCH         Epoch to train [25]
  --word_embed_dim WORD_EMBED_DIM
                        The dimension of word embedding matrix [650]
  --char_embed_dim CHAR_EMBED_DIM
                        The dimension of char embedding matrix [15]
  --max_word_length MAX_WORD_LENGTH
                        The maximum length of word [65]
  --batch_size BATCH_SIZE
                        The size of batch images [100]
  --seq_length SEQ_LENGTH
                        The # of timesteps to unroll for [35]
  --learning_rate LEARNING_RATE
                        Learning rate [1.0]
  --decay DECAY         Decay of SGD [0.5]
  --dropout_prob DROPOUT_PROB
                        Probability of dropout layer [0.5]
  --feature_maps FEATURE_MAPS
                        The # of feature maps in CNN
                        [50,100,150,200,200,200,200]
  --kernels KERNELS     The width of CNN kernels [1,2,3,4,5,6,7]
  --model MODEL         The type of model to train and test [LSTM, LSTMTDNN]
  --data_dir DATA_DIR   The name of data directory [data]
  --dataset DATASET     The name of dataset [ptb]
  --checkpoint_dir CHECKPOINT_DIR
                        Directory name to save the checkpoints [checkpoint]
  --forward_only [FORWARD_ONLY]
                        True for forward only, False for training [False]
  --noforward_only
  --use_char [USE_CHAR]
                        Use character-level language model [True]
  --nouse_char
  --use_word [USE_WORD]
                        Use word-level language [False]
  --nouse_word

but more options can be found in models/LSTMTDNN and models/TDNN.

Performance

Failed to reproduce the results of paper (2016.02.12). If you are looking for a code that reproduced the paper's result, see https://github.com/mkroutikov/tf-lstm-char-cnn.

loss

The perplexity on the test sets of Penn Treebank (PTB) corpora.

Name Character embed LSTM hidden units Paper (Y Kim 2016) This repo.
LSTM-Char-Small 15 100 92.3 in progress
LSTM-Char-Large 15 150 78.9 in progress

Author

Taehoon Kim / @carpedm20

Owner
Taehoon Kim
ex OpenAI
Taehoon Kim
Erpnext app for make employee salary on payroll entry based on one or more project with percentage for all project equal 100 %

Project Payroll this app for make payroll for employee based on projects like project on 30 % and project 2 70 % as account dimension it makes genral

Ibrahim Morghim 8 Jan 02, 2023
Simple sinc interpolation in PyTorch.

Kazane: simple sinc interpolation for 1D signal in PyTorch Kazane utilize FFT based convolution to provide fast sinc interpolation for 1D signal when

Chin-Yun Yu 10 May 03, 2022
A tool to visualise the results of AlphaFold2 and inspect the quality of structural predictions

AlphaFold Analyser This program produces high quality visualisations of predicted structures produced by AlphaFold. These visualisations allow the use

Oliver Powell 3 Nov 13, 2022
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
This package contains a PyTorch Implementation of IB-GAN of the submitted paper in AAAI 2021

The PyTorch implementation of IB-GAN model of AAAI 2021 This package contains a PyTorch implementation of IB-GAN presented in the submitted paper (IB-

Insu Jeon 9 Mar 30, 2022
Simple (but Strong) Baselines for POMDPs

Recurrent Model-Free RL is a Strong Baseline for Many POMDPs Welcome to the POMDP world! This repo provides some simple baselines for POMDPs, specific

Tianwei V. Ni 172 Dec 29, 2022
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
An All-MLP solution for Vision, from Google AI

MLP Mixer - Pytorch An All-MLP solution for Vision, from Google AI, in Pytorch. No convolutions nor attention needed! Yannic Kilcher video Install $ p

Phil Wang 784 Jan 06, 2023
This repo is about implementing different approaches of pose estimation and also is a sub-task of the smart hospital bed project :smile:

Pose-Estimation This repo is a sub-task of the smart hospital bed project which is about implementing the task of pose estimation πŸ˜„ Many thanks to th

Max 11 Oct 17, 2022
An image classification app boilerplate to serve your deep learning models asap!

Image πŸ–Ό Classification App Boilerplate Have you been puzzled by tons of videos, blogs and other resources on the internet and don't know where and ho

Smaranjit Ghose 27 Oct 06, 2022
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving (ICCV 2021)

Exploring Simple 3D Multi-Object Tracking for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Exploring Simple 3D Multi-Object Tracking for

QCraft 141 Nov 21, 2022
μ‹œκ° μž₯애인을 μœ„ν•œ 슀마트 μ§€νŒ‘μ΄μ— ν™œμš©λ  λ”₯λŸ¬λ‹ λͺ¨λΈ (DL Model Repo)

SmartCane-DL-Model Smart Cane using semantic segmentation μ°Έκ³ ν•œ Github repositoy πŸ”— https://github.com/JunHyeok96/Road-Segmentation.git 데이터셋 πŸ”— https://

λ°˜λ“œμ‹œ μ‘Έμ—…ν•œλ‹€ (Team Just Graduate) 4 Dec 03, 2021
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
A graph adversarial learning toolbox based on PyTorch and DGL.

GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. πŸš€ Installat

Jintang Li 54 Jan 05, 2023
Evolutionary Scale Modeling (esm): Pretrained language models for proteins

Evolutionary Scale Modeling This repository contains code and pre-trained weights for Transformer protein language models from Facebook AI Research, i

Meta Research 1.6k Jan 09, 2023
Camview - A CLI-tool used to stream CCTV online footage based on URL params

CamView A CLI-tool used to stream CCTV online footage based on URL params Get St

Finn Lancaster 54 Dec 09, 2022
Code for ICML 2021 paper: How could Neural Networks understand Programs?

OSCAR This repository contains the source code of our ICML 2021 paper How could Neural Networks understand Programs?. Environment Run following comman

Dinglan Peng 115 Dec 17, 2022
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
Square Root Bundle Adjustment for Large-Scale Reconstruction

RootBA: Square Root Bundle Adjustment Project Page | Paper | Poster | Video | Code Table of Contents Citation Dependencies Installing dependencies on

Nikolaus Demmel 205 Dec 20, 2022