Automatic voice-synthetised summaries of latest research papers on arXiv

Overview

PaperWhisperer

PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv on a topic, by performing a keyword-based search. Then, it creates vocal summaries of the articles using Text-To-Speech and stores them to disk.

Installation

To install the package, move to the root of the repo and type in the console:

$ pip install .

If you plan to develop the package further, install the package in editable mode also installing the packages necessary to run unittests:

$ pip install -e .[test]

Testing

To run unittests, issue the following command from the root of the repo:

$ pytest

Package structure

The package is divided into 2 sub-packages:

  • retrieval
  • tts

retrieval contains data structures and facilities necessary to retrieve articles from arXiv. Under the hood, the app uses arxiv, a Python package that is a wrapper around the arXiv free API.

tts has facilities to generate speech renditions of text-based article summaries. The summary of an article consists of its title, authors, and abstract. Speech synthesis is performed using Google Cloud Text-To-Speech.

Setting up Google Cloud Text-To-Speech

PaperWhisperer uses Google Cloud Text-To-Speech to synthesise speech.

In order to be able to use this service, you should:

  1. create an account on Google Cloud,
  2. create a Cloud Platform project,
  3. enable the Text-To-Speech API in the project
  4. setup authentication
  5. download a Json private key

More info on how to set up Google Cloud Text-To-Speech

Environment variables

The app uses an environment variable called GOOGLE_APPLICATION_CREDENTIALS to connect to Google Cloud Text-To-Speech safely.

In config.yml, set GOOGLE_APPLICATION_CREDENTIALS to the path of the Json private key you previously downloaded while setting up the Google service.

Without this step, you won't be able to connect to Google Cloud Text-To-Speech, and the app will throw an error.

How to create summaries

To create summaries for a keyword search, use the create_summaries entry point. This is the only console script of the package and the main entry point of the application.

Below is an example of how you can run the script:

$ create_summaries "generate chord progressions" 100 /save/dir 40

The script takes 4 positional arguments:

  • keywords used for searching articles (more than one keyword is possible)
  • maximum number of articles to retrieve
  • directory where to store vocal summaries
  • retrieve articles no older than this integer value in days

Dependencies

PaperWhisperer depends on the following packages:

  • arxiv==1.2.0
  • google-cloud-texttospeech
  • python-dotenv

YouTube video

Learn more about PaperWhisperer in this project presentation video on The Sound of AI YouTube channel.

Owner
Valerio Velardo
AI audio/music researcher. Love Python.
Valerio Velardo
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
A toolkit for Lagrangian-based constrained optimization in Pytorch

Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of

Cooper 34 Jan 01, 2023
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021) This is the implementation of PSD (ICCV 2021),

12 Dec 12, 2022
This is official implementaion of paper "Token Shift Transformer for Video Classification".

This is official implementaion of paper "Token Shift Transformer for Video Classification". We achieve SOTA performance 80.40% on Kinetics-400 val. Paper link

VideoNet 60 Dec 30, 2022
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
[SIGGRAPH Asia 2021] Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN

Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN [Paper] [Project Website] [Output resutls] Official Pytorch i

Badour AlBahar 215 Dec 17, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representation from common sense knowledge graphs.

ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representa

Bats Research 94 Nov 21, 2022
High-fidelity 3D Model Compression based on Key Spheres

High-fidelity 3D Model Compression based on Key Spheres This repository contains the implementation of the paper: Yuanzhan Li, Yuqi Liu, Yujie Lu, Siy

5 Oct 11, 2022
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a

53 Dec 02, 2022
Implement slightly different caffe-segnet in tensorflow

Tensorflow-SegNet Implement slightly different (see below for detail) SegNet in tensorflow, successfully trained segnet-basic in CamVid dataset. Due t

Tseng Kuan Lun 364 Oct 27, 2022
unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier"

SquarePlus (Pytorch implement) unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier" SquarePlus Squareplus is a Softplus-L

SeeFun 3 Dec 29, 2021
Meta graph convolutional neural network-assisted resilient swarm communications

Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat

62 Dec 06, 2022
[ACL 20] Probing Linguistic Features of Sentence-level Representations in Neural Relation Extraction

REval Table of Contents Introduction Overview Requirements Installation Probing Usage Citation License 🎓 Introduction REval is a simple framework for

13 Jan 06, 2023
A curated list of awesome neural radiance fields papers

Awesome Neural Radiance Fields A curated list of awesome neural radiance fields papers, inspired by awesome-computer-vision. How to submit a pull requ

Yen-Chen Lin 3.9k Dec 27, 2022
Implementation of parameterized soft-exponential activation function.

Soft-Exponential-Activation-Function: Implementation of parameterized soft-exponential activation function. In this implementation, the parameters are

Shuvrajeet Das 1 Feb 23, 2022
Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

Sukrut Rao 32 Dec 13, 2022