Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation

Overview

Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation

This repo contains code of Simcal, which won the LVIS 2019 challenge. Note that it can achieve much higher tail class performance by simply change the calibration head from 2-layer fc with random initialization (2fc_rand) to 3-layer fc initialized from original model with standard training (3fc_ft), refer to paper for details. But we did not notice this during the challenge submission and used 2fc_rand, so much higher result of tail clasees on test set is expected with SimCal 3fc_ft.

License

This project is released under the Apache 2.0 license.

TODO

  • remove and clean redundant and commented codes
  • update script for installing with pytorch 1.1.0 to have faster calibration training
  • merge mask r-cnn and htc model test file, add htc calibration code, add Props-GT experiment code

Pull requests to improve the codebase or fix bugs are welcome

Installation

Simcal is based on mmdetection, Please refer to INSTALL.md for installation and dataset preparation.

Or run the following installation script:

#!/usr/bin/env bash
conda create -n simcal_mmdet python=3.7
source ~/anaconda3/etc/profile.d/conda.sh
conda init bash
conda activate simcal_mmdet
echo "python path"
which python
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=9.2 -c pytorch
pip install cython==0.29.12 mmcv==0.2.16 matplotlib terminaltables
pip install "git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI"
pip install opencv-python-headless
pip install Pillow==6.1
pip install numpy==1.17.1 --no-deps
git clone https://github.com/twangnh/SimCal
cd SimCal
pip install -v -e .

To also get instance-centric AP results, please do not install official LVIS api or cocoapi with pip, as we have modified it with a local copy in the repository to additionally calculate instance centric bin AP results (i.e., AP1,AP2,AP3,AP4). We may create a pull request to update the official APIs for this purpose later.

Dataset preparation

For LVIS dataset, please arrange the data as:

SimCal
├── configs
├── data
│   ├── LVIS
│   │   ├── lvis_v0.5_train.json.zip
│   │   ├── lvis_v0.5_val.json.zip
│   │   ├── images
│   │   │   ├── train2017
│   │   │   ├── val2017

note for LVIS images, you can just create a softlink for the val2017 to point to COCO val2017

For COCO-LT (our sampled long-tail version of COCO, refer to paper for details), please download the sampled annotation file train_coco2017_LT_sampled.json and put it at data/coco/annotations/

Training (Calibration)

Calibration uses multi-gpu training to perform bi-level proposal sampling, to run calibration on a model, e.g.,

python tools/train.py configs/simcal/calibration/mask_rcnn_r50_fpn_1x_lvis_agnostic.py --use_model 3fc_ft --exp_prefix xxx --gpus 4/8

will use 3fc_ft head as described in the paper and save calibrated head ckpt with exp_prefix

Pre-trained models and calibrated heads

All the calibrated models reported in the paper are released for reproduction and future research:

Model Link
r50-ag epoch-12 Googledrive
calibrated cls head Googledrive
Model Link
r50 epoch-12 Googledrive
calibrated cls head Googledrive
Model Link
r50-ag-coco-lt epoch-12 Googledrive
calibrated cls head Googledrive
Model Link
htc-x101 epoch-20 Googledrive
calhead-stege0 Googledrive
calhead-stege1 Googledrive
calhead-stege2 Googledrive

To evaluate and reproduce the paper result models, please first download the model checkpoints and arrange them as:

SimCal
├── configs
├── work_dirs
    |-- htc
    |   |-- 3fc_ft_stage0.pth
    |   |-- 3fc_ft_stage1.pth
    |   |-- 3fc_ft_stage2.pth
    |   `-- epoch_20.pth
    |-- mask_rcnn_r50_fpn_1x_cocolt_agnostic
    |   |-- 3fc_ft.pth
    |   `-- epoch_12.pth
    |-- mask_rcnn_r50_fpn_1x_lvis_agnostic
    |   |-- 3fc_ft.pth
    |   `-- epoch_12.pth
    `-- mask_rcnn_r50_fpn_1x_lvis_clswise
        |-- 3fc_ft_epoch.pth
        |-- 3fc_ft.pth
        `-- epoch_12.pth

Test with pretrained models and calibrated heads

mrcnn on lvis, paper result:

mrcnn on lvis paper result

Test LVIS r50-ag model (use --eval bbox for box result)

./tools/dist_test.sh configs/simcal/calibration/mask_rcnn_r50_fpn_1x_lvis_agnostic.py 8 --cal_head 3fc_ft --out ./temp.pkl --eval segm

bin 0_10 AP: 0.13286122428874017
bin 10_100 AP: 0.23243947868384135
bin 100_1000 AP: 0.20696891455408
bin 1000_* AP: 0.2615438157753328
bAP 0.20845335832549858
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.222
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=300 catIds=all] = 0.354
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=300 catIds=all] = 0.236
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.154
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.298
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.373
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.182
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.215
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.247
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.315
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.216
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.382
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.453

Test LVIS r50 model (use --eval bbox for box result)

./tools/dist_test.sh configs/simcal/calibration/mask_rcnn_r50_fpn_1x_lvis_clswise.py 8 --cal_head 3fc_ft --out ./temp.pkl --eval segm

bin 0_10 AP: 0.10187003036862649
bin 10_100 AP: 0.23907519508889202
bin 100_1000 AP: 0.22468457541750592
bin 1000_* AP: 0.28687985066050825
bAP 0.21312741288388318
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.234
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=300 catIds=all] = 0.375
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=300 catIds=all] = 0.245
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.167
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.316
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.405
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.164
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.225
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.272
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.331
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.399
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.481

mrcnn on cocolt, paper result:

mrcnn on lvis paper result

Test COCO-LT r50-ag model (use --eval bbox for box result)

./tools/dist_test.sh configs/simcal/calibration/mask_rcnn_r50_fpn_1x_lvis_agnostic.py 8 --cal_head 3fc_ft --out ./temp.pkl --eval segm

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.246
bin ins nums: [4, 24, 32, 20]
bins ap: [0.1451797625472811, 0.1796142130031695, 0.27337165679657216, 0.3027201541441131]
eAP : 0.22522144662278398
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.412
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.257
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.133
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.278
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.334
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.239
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.424
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.450
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.269
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.481
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.586

htc on lvis, paper result:

mrcnn on lvis paper result

Test HTC model (use --eval bbox for box result)

./tools/dist_test_htc.sh configs/simcal/calibration/htc_lvis_31d9.py 8 --out ./temp2.pkl --eval segm

bin 0_10 AP: 0.18796762487467375
bin 10_100 AP: 0.34907335159564473
bin 100_1000 AP: 0.3304618611020927
bin 1000_* AP: 0.3674197862439286
bAP 0.30873065595408494
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.334
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=300 catIds=all] = 0.490
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=300 catIds=all] = 0.357
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.228
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.422
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.565
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.247
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.337
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.364
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.428
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.300
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.506
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.631

note testing with LVIS can be significantly slower as max_det is 300 and det confidence threshold is 0.0

Props-GT experiment

By Props-GT experiment, we would like to emphasize that there is still large room of improvement along the direction of improving object proposal classification.

Balanced Group Softmax

We also encourage you to check our following up work Balanced Group Softmax after the LVIS challenge, (accepted by CVPR20 oral). It employs a more specific calibration approach with redesigned the softmax function, the calibration is more effective without dual-head inference, and only calibrates last layer of classification head. Code is available at https://github.com/FishYuLi/BalancedGroupSoftmax

Citation

Please consider to cite our ECCV20 paper:

@article{wang2020devil,
  title={The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation},
  author={Wang, Tao and Li, Yu and Kang, Bingyi and Li, Junnan and Liew, Junhao and Tang, Sheng and Hoi, Steven and Feng, Jiashi},
  journal={arXiv preprint arXiv:2007.11978},
  year={2020}
}

tech report for LVIS challenge 2019 at ICCV19 (Yu Li and Tao Wang have equal contribution for the LVIS challenge):

@article{wang2019classification,
  title={Classification Calibration for Long-tail Instance Segmentation},
  author={Wang, Tao and Li, Yu and Kang, Bingyi and Li, Junnan and Liew, Jun Hao and Tang, Sheng and Hoi, Steven and Feng, Jiashi},
  journal={arXiv preprint arXiv:1910.13081},
  year={2019}
}

Our following work Group Softmax at CVPR20 (oral):

@inproceedings{li2020overcoming,
  title={Overcoming Classifier Imbalance for Long-Tail Object Detection With Balanced Group Softmax},
  author={Li, Yu and Wang, Tao and Kang, Bingyi and Tang, Sheng and Wang, Chunfeng and Li, Jintao and Feng, Jiashi},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={10991--11000},
  year={2020}
}
Owner
twang
make things work
twang
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023
A compendium of useful, interesting, inspirational usage of pandas functions, each example will be an ipynb file

Pandas_by_examples A compendium of useful/interesting/inspirational usage of pandas functions, each example will be an ipynb file What is this reposit

Guangyuan(Frank) Li 32 Nov 20, 2022
Framework web SnakeServer.

SnakeServer - Framework Web 🐍 Documentação oficial do framework SnakeServer. Conteúdo Sobre Como contribuir Enviar relatórios de segurança Pull reque

Jaedson Silva 0 Jul 21, 2022
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
Code for "OctField: Hierarchical Implicit Functions for 3D Modeling (NeurIPS 2021)"

OctField(Jittor): Hierarchical Implicit Functions for 3D Modeling Introduction This repository is code release for OctField: Hierarchical Implicit Fun

55 Dec 08, 2022
[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"

ASSL This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR)

Huan Wang 47 Nov 28, 2022
AirCode: A Robust Object Encoding Method

AirCode This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method" Demo Object matching comparison when the obj

Chen Wang 30 Dec 09, 2022
Predicting future trajectories of people in cameras of novel scenarios and views.

Pedestrian Trajectory Prediction Predicting future trajectories of pedestrians in cameras of novel scenarios and views. This repository contains the c

8 Sep 03, 2022
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
Models, datasets and tools for Facial keypoints detection

Template for Data Science Project This repo aims to give a robust starting point to any Data Science related project. It contains readymade tools setu

girafe.ai 1 Feb 11, 2022
Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER 🦌 🦒 Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEE

33 Dec 23, 2022
The Balloon Learning Environment - flying stratospheric balloons with deep reinforcement learning.

Balloon Learning Environment Docs The Balloon Learning Environment (BLE) is a simulator for stratospheric balloons. It is designed as a benchmark envi

Google 87 Dec 25, 2022
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
Informal Persian Universal Dependency Treebank

Informal Persian Universal Dependency Treebank (iPerUDT) Informal Persian Universal Dependency Treebank, consisting of 3000 sentences and 54,904 token

Roya Kabiri 0 Jan 05, 2022