Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation

Overview

Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation

This repo contains code of Simcal, which won the LVIS 2019 challenge. Note that it can achieve much higher tail class performance by simply change the calibration head from 2-layer fc with random initialization (2fc_rand) to 3-layer fc initialized from original model with standard training (3fc_ft), refer to paper for details. But we did not notice this during the challenge submission and used 2fc_rand, so much higher result of tail clasees on test set is expected with SimCal 3fc_ft.

License

This project is released under the Apache 2.0 license.

TODO

  • remove and clean redundant and commented codes
  • update script for installing with pytorch 1.1.0 to have faster calibration training
  • merge mask r-cnn and htc model test file, add htc calibration code, add Props-GT experiment code

Pull requests to improve the codebase or fix bugs are welcome

Installation

Simcal is based on mmdetection, Please refer to INSTALL.md for installation and dataset preparation.

Or run the following installation script:

#!/usr/bin/env bash
conda create -n simcal_mmdet python=3.7
source ~/anaconda3/etc/profile.d/conda.sh
conda init bash
conda activate simcal_mmdet
echo "python path"
which python
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=9.2 -c pytorch
pip install cython==0.29.12 mmcv==0.2.16 matplotlib terminaltables
pip install "git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI"
pip install opencv-python-headless
pip install Pillow==6.1
pip install numpy==1.17.1 --no-deps
git clone https://github.com/twangnh/SimCal
cd SimCal
pip install -v -e .

To also get instance-centric AP results, please do not install official LVIS api or cocoapi with pip, as we have modified it with a local copy in the repository to additionally calculate instance centric bin AP results (i.e., AP1,AP2,AP3,AP4). We may create a pull request to update the official APIs for this purpose later.

Dataset preparation

For LVIS dataset, please arrange the data as:

SimCal
├── configs
├── data
│   ├── LVIS
│   │   ├── lvis_v0.5_train.json.zip
│   │   ├── lvis_v0.5_val.json.zip
│   │   ├── images
│   │   │   ├── train2017
│   │   │   ├── val2017

note for LVIS images, you can just create a softlink for the val2017 to point to COCO val2017

For COCO-LT (our sampled long-tail version of COCO, refer to paper for details), please download the sampled annotation file train_coco2017_LT_sampled.json and put it at data/coco/annotations/

Training (Calibration)

Calibration uses multi-gpu training to perform bi-level proposal sampling, to run calibration on a model, e.g.,

python tools/train.py configs/simcal/calibration/mask_rcnn_r50_fpn_1x_lvis_agnostic.py --use_model 3fc_ft --exp_prefix xxx --gpus 4/8

will use 3fc_ft head as described in the paper and save calibrated head ckpt with exp_prefix

Pre-trained models and calibrated heads

All the calibrated models reported in the paper are released for reproduction and future research:

Model Link
r50-ag epoch-12 Googledrive
calibrated cls head Googledrive
Model Link
r50 epoch-12 Googledrive
calibrated cls head Googledrive
Model Link
r50-ag-coco-lt epoch-12 Googledrive
calibrated cls head Googledrive
Model Link
htc-x101 epoch-20 Googledrive
calhead-stege0 Googledrive
calhead-stege1 Googledrive
calhead-stege2 Googledrive

To evaluate and reproduce the paper result models, please first download the model checkpoints and arrange them as:

SimCal
├── configs
├── work_dirs
    |-- htc
    |   |-- 3fc_ft_stage0.pth
    |   |-- 3fc_ft_stage1.pth
    |   |-- 3fc_ft_stage2.pth
    |   `-- epoch_20.pth
    |-- mask_rcnn_r50_fpn_1x_cocolt_agnostic
    |   |-- 3fc_ft.pth
    |   `-- epoch_12.pth
    |-- mask_rcnn_r50_fpn_1x_lvis_agnostic
    |   |-- 3fc_ft.pth
    |   `-- epoch_12.pth
    `-- mask_rcnn_r50_fpn_1x_lvis_clswise
        |-- 3fc_ft_epoch.pth
        |-- 3fc_ft.pth
        `-- epoch_12.pth

Test with pretrained models and calibrated heads

mrcnn on lvis, paper result:

mrcnn on lvis paper result

Test LVIS r50-ag model (use --eval bbox for box result)

./tools/dist_test.sh configs/simcal/calibration/mask_rcnn_r50_fpn_1x_lvis_agnostic.py 8 --cal_head 3fc_ft --out ./temp.pkl --eval segm

bin 0_10 AP: 0.13286122428874017
bin 10_100 AP: 0.23243947868384135
bin 100_1000 AP: 0.20696891455408
bin 1000_* AP: 0.2615438157753328
bAP 0.20845335832549858
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.222
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=300 catIds=all] = 0.354
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=300 catIds=all] = 0.236
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.154
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.298
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.373
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.182
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.215
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.247
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.315
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.216
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.382
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.453

Test LVIS r50 model (use --eval bbox for box result)

./tools/dist_test.sh configs/simcal/calibration/mask_rcnn_r50_fpn_1x_lvis_clswise.py 8 --cal_head 3fc_ft --out ./temp.pkl --eval segm

bin 0_10 AP: 0.10187003036862649
bin 10_100 AP: 0.23907519508889202
bin 100_1000 AP: 0.22468457541750592
bin 1000_* AP: 0.28687985066050825
bAP 0.21312741288388318
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.234
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=300 catIds=all] = 0.375
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=300 catIds=all] = 0.245
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.167
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.316
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.405
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.164
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.225
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.272
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.331
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.399
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.481

mrcnn on cocolt, paper result:

mrcnn on lvis paper result

Test COCO-LT r50-ag model (use --eval bbox for box result)

./tools/dist_test.sh configs/simcal/calibration/mask_rcnn_r50_fpn_1x_lvis_agnostic.py 8 --cal_head 3fc_ft --out ./temp.pkl --eval segm

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.246
bin ins nums: [4, 24, 32, 20]
bins ap: [0.1451797625472811, 0.1796142130031695, 0.27337165679657216, 0.3027201541441131]
eAP : 0.22522144662278398
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.412
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.257
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.133
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.278
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.334
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.239
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.424
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.450
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.269
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.481
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.586

htc on lvis, paper result:

mrcnn on lvis paper result

Test HTC model (use --eval bbox for box result)

./tools/dist_test_htc.sh configs/simcal/calibration/htc_lvis_31d9.py 8 --out ./temp2.pkl --eval segm

bin 0_10 AP: 0.18796762487467375
bin 10_100 AP: 0.34907335159564473
bin 100_1000 AP: 0.3304618611020927
bin 1000_* AP: 0.3674197862439286
bAP 0.30873065595408494
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.334
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=300 catIds=all] = 0.490
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=300 catIds=all] = 0.357
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.228
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.422
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.565
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  r] = 0.247
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  c] = 0.337
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=  f] = 0.364
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 catIds=all] = 0.428
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     s | maxDets=300 catIds=all] = 0.300
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     m | maxDets=300 catIds=all] = 0.506
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=     l | maxDets=300 catIds=all] = 0.631

note testing with LVIS can be significantly slower as max_det is 300 and det confidence threshold is 0.0

Props-GT experiment

By Props-GT experiment, we would like to emphasize that there is still large room of improvement along the direction of improving object proposal classification.

Balanced Group Softmax

We also encourage you to check our following up work Balanced Group Softmax after the LVIS challenge, (accepted by CVPR20 oral). It employs a more specific calibration approach with redesigned the softmax function, the calibration is more effective without dual-head inference, and only calibrates last layer of classification head. Code is available at https://github.com/FishYuLi/BalancedGroupSoftmax

Citation

Please consider to cite our ECCV20 paper:

@article{wang2020devil,
  title={The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation},
  author={Wang, Tao and Li, Yu and Kang, Bingyi and Li, Junnan and Liew, Junhao and Tang, Sheng and Hoi, Steven and Feng, Jiashi},
  journal={arXiv preprint arXiv:2007.11978},
  year={2020}
}

tech report for LVIS challenge 2019 at ICCV19 (Yu Li and Tao Wang have equal contribution for the LVIS challenge):

@article{wang2019classification,
  title={Classification Calibration for Long-tail Instance Segmentation},
  author={Wang, Tao and Li, Yu and Kang, Bingyi and Li, Junnan and Liew, Jun Hao and Tang, Sheng and Hoi, Steven and Feng, Jiashi},
  journal={arXiv preprint arXiv:1910.13081},
  year={2019}
}

Our following work Group Softmax at CVPR20 (oral):

@inproceedings{li2020overcoming,
  title={Overcoming Classifier Imbalance for Long-Tail Object Detection With Balanced Group Softmax},
  author={Li, Yu and Wang, Tao and Kang, Bingyi and Tang, Sheng and Wang, Chunfeng and Li, Jintao and Feng, Jiashi},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={10991--11000},
  year={2020}
}
Owner
twang
make things work
twang
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
Pre-trained model, code, and materials from the paper "Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation" (MICCAI 2019).

Adaptive Segmentation Mask Attack This repository contains the implementation of the Adaptive Segmentation Mask Attack (ASMA), a targeted adversarial

Utku Ozbulak 53 Jul 04, 2022
Using LSTM write Tang poetry

本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。

56 Dec 15, 2022
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
quantize aware training package for NCNN on pytorch

ncnnqat ncnnqat is a quantize aware training package for NCNN on pytorch. Table of Contents ncnnqat Table of Contents Installation Usage Code Examples

62 Nov 23, 2022
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Asutosh Nayak 136 Dec 28, 2022
We have made you a wrapper you can't refuse

We have made you a wrapper you can't refuse We have a vibrant community of developers helping each other in our Telegram group. Join us! Stay tuned fo

20.6k Jan 09, 2023
ToFFi - Toolbox for Frequency-based Fingerprinting of Brain Signals

ToFFi Toolbox This repository contains "before peer review" version of the software related to the preprint of the publication ToFFi - Toolbox for Fre

4 Aug 31, 2022
Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Code Artifacts Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driv

Andrea Stocco 2 Aug 24, 2022
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication"

NFFT4ANOVA Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication" This package uses th

Theresa Wagner 1 Aug 10, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

DSIG Deep Structured Instance Graph for Distilling Object Detectors Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia. [pdf] [slide]

DV Lab 31 Nov 17, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
LineBoard - Python+React+MySQL-白板即時系統改善人群行為

LineBoard-白板即時系統改善人群行為 即時顯示實驗室的使用狀況,並遠端預約排隊,以此來改善人們的工作效率 程式架構 運作流程 使用者先至該實驗室網站預約

Bo-Jyun Huang 1 Feb 22, 2022