Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

Related tags

Deep LearningNRNS
Overview

No RL No Simulation (NRNS)

Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

NRNS is a heriarchical modular approach to image goal navigation that uses a topological map and distance estimator to navigate and self-localize. Distance function and target prediction function are learnt over passive video trajectories gathered from Mp3D and Gibson.

NRNS is a heriarchical modular approach to image goal navigation that uses a topological map and distance estimator to navigate and self-localize. Distance function and target prediction function are learnt over passive video trajectories gathered from Mp3D and Gibson.

[project website]

Setup

This project is developed with Python 3.6. If you are using miniconda or anaconda, you can create an environment:

conda create -n nrns python3.6
conda activate nrns

Install Habitat and Other Dependencies

NRNS makes extensive use of the Habitat Simulator and Habitat-Lab developed by FAIR. You will first need to install both Habitat-Sim and Habitat-Lab.

Please find the instructions to install habitat here

If you are using conda, Habitat-Sim can easily be installed with

conda install -c aihabitat -c conda-forge habitat-sim headless

We recommend downloading the test scenes and running the example script as described here to ensure the installation of Habitat-Sim and Habitat-Lab was successful. Now you can clone this repository and install the rest of the dependencies:

git clone [email protected]:meera1hahn/NRNS.git
cd NRNS
python -m pip install -r requirements.txt
python download_aux.py

Download Scene Data

Like Habitat-Lab, we expect a data folder (or symlink) with a particular structure in the top-level directory of this project. Running the download_aux.py script will download the pretrained models but you will still need to download the scene data. We evaluate our agents on Matterport3D (MP3D) and Gibson scene reconstructions. Instructions on how to download RealEstate10k can be found here.

Image-Nav Test Episodes

The image-nav test epsiodes used in this paper for MP3D and Gibson can be found here. These were used to test all baselines and NRNS.

Matterport3D

The official Matterport3D download script (download_mp.py) can be accessed by following the "Dataset Download" instructions on their project webpage. The scene data can then be downloaded this way:

# requires running with python 2.7
python download_mp.py --task habitat -o data/scene_datasets/mp3d/

Extract this data to data/scene_datasets/mp3d such that it has the form data/scene_datasets/mp3d/{scene}/{scene}.glb. There should be 90 total scenes. We follow the standard train/val/test splits.

Gibson

The official Gibson dataset can be accessed on their project webpage. Please follow the link to download the Habitat Simulator compatible data. The link will first take you to the license agreement and then to the data. We follow the standard train/val/test splits.

Running pre-trained models

Look at the run scripts in src/image_nav/run_scripts/ for examples of how to run the model.

Difficulty settings options are: easy, medium, hard

Path Type setting options are: straight, curved

To run NRNS on gibson without noise for example on the straight setting with a medium difficulty

cd src/image_nav/
python -W ignore run.py \
    --dataset 'gibson' \
    --path_type 'straight' \
    --difficulty 'medium' \

Citing

If you use NRNS in your research, please cite the following paper:

@inproceedings{hahn_nrns_2021,
  title={No RL, No Simulation: Learning to Navigate without Navigating},
  author={Meera Hahn and Devendra Chaplot and Mustafa Mukadam and James M. Rehg and Shubham Tulsiani and Abhinav Gupta},
  booktitle={Neurips},
  year={2021}
 }
Owner
Meera Hahn
Ph.D. Student in Computer Science School of Interactive Computing Georgia Institute of Technology
Meera Hahn
RoadMap and preparation material for Machine Learning and Data Science - From beginner to expert.

ML-and-DataScience-preparation This repository has the goal to create a learning and preparation roadMap for Machine Learning Engineers and Data Scien

33 Dec 29, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition

PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition The unofficial code of CDistNet. Now, we ha

25 Jul 20, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
Efficient Sparse Attacks on Videos using Reinforcement Learning

EARL This repository provides a simple implementation of the work "Efficient Sparse Attacks on Videos using Reinforcement Learning" Example: Demo: Her

12 Dec 05, 2021
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning Paper | Poster | Supplementary The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this

Tong Zekun 28 Jan 08, 2023
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022
End-to-end Temporal Action Detection with Transformer. [Under review]

TadTR: End-to-end Temporal Action Detection with Transformer By Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Song Bai, Xiang Bai. This repo holds the c

Xiaolong Liu 105 Dec 25, 2022
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022
A collection of Jupyter notebooks to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

StyleGAN3 CLIP-based guidance StyleGAN3 + CLIP StyleGAN3 + inversion + CLIP This repo is a collection of Jupyter notebooks made to easily play with St

Eugenio Herrera 176 Dec 30, 2022
Neural Motion Learner With Python

Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec

Jinseok Bae 14 Nov 28, 2022
FridaHookAppTool - Frida Hook App Tool With Python

FridaHookAppTool(以下是Hook mpaas框架的例子) mpaas移动开发框架ios端抓包hook脚本 使用方法:链接数据线,开启burp设置

13 Nov 30, 2022
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
small collection of functions for neural networks

neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h

4 Aug 23, 2021
Image Segmentation using U-Net, U-Net with skip connections and M-Net architectures

Brain-Image-Segmentation Segmentation of brain tissues in MRI image has a number of applications in diagnosis, surgical planning, and treatment of bra

Angad Bajwa 8 Oct 27, 2022
Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging

ShICA Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging Install Move into the ShICA directory cd ShICA

8 Nov 07, 2022
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
DeceFL: A Principled Decentralized Federated Learning Framework

DeceFL: A Principled Decentralized Federated Learning Framework This repository comprises codes that reproduce experiments in Ye, et al (2021), which

Huazhong Artificial Intelligence Lab (HAIL) 10 May 31, 2022
optimization routines for hyperparameter tuning

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Marc Claesen 398 Nov 09, 2022