Image Segmentation using U-Net, U-Net with skip connections and M-Net architectures

Overview

Brain-Image-Segmentation

Segmentation of brain tissues in MRI image has a number of applications in diagnosis, surgical planning, and treatment of brain abnormalities. However, it is a time-consuming task to be performed by medical experts. In addition to that, it is challenging due to intensity overlap between the different tissues caused by the intensity homogeneity and artifacts inherent to MRI. Tominimize this effect, it was proposed to apply histogram based preprocessing. The goal of this project was to develop a robust and automatic segmentation of the human brain.

To tackle the problem, I have used a Convolutional Neural Network (CNN) based approach. U-net is one of the most commonly used and best-performing architecture in medical image segmentation. This moodel consists of the 2-D implementation of the U-Net.The performance was evaluated using Dice Coefficient (DSC).

Dataset

This model was built for the following dataset: https://figshare.com/articles/brain_tumor_dataset/1512427

3064 T1-weighted contrast-inhanced images with three kinds of brain tumor are provided in the dataset.The three types of tumor are

1.Glioma 2.Pituitary Tumor 3.Meningioma

dataset

Model Architecture

The first half of the U-net is effectively a typical convolutional neural network like one would construct for an image classification task, with successive rounds of zero-padded ReLU-activated convolutions and ReLU-activated max-pooling layers. Instead of classification occurring at the "bottom" of the U, symmetrical upsampling and convolution layers are used to bring the pixel-wise prediction layer back to the original dimensions of the input image.

Here is the architecture for the 2D U-Net from the original publication mentioned earlier:

u-net-architecture

Here's an example of the correlation between my predictions in a single 2D plane:

Example 1: Example 2:
ground truth prediction

Libraries Used

The code has been tested with the following configuration

  • h5py == 2.10.0
  • keras == 2.3.1
  • scipy == 0.19.0
  • sckit-learn == 0.18.1
  • tensorflow == 2.2.0
  • tgpu == NVIDIA Tesla K80 (Google Colab)

The U-Net was based on this paper: https://arxiv.org/abs/1802.10508

Tips for improving model:

-The feature maps have been reduced so that the model will train using under 12GB of memory. If you have more memory to use, consider increasing the feature maps this will increase the complexity of the model (which will also increase its memory footprint but decrease its execution speed).

-If you choose a subset with larger tensors (e.g. liver or lung), it is recommended to add another maxpooling level (and corresponding upsampling) to the U-Net model. This will of course increase the memory requirements and decrease execution speed, but should give better results because it considers an additional recepetive field/spatial size.

-Consider different loss functions. The default loss function here is a binary_crossentropy. Different loss functions yield different loss curves and may result in better accuracy. However, you may need to adjust the learning_rate and number of epochs to train as you experiment with different loss functions.

-Try exceuting other U-Net architectures in the 2d/model folders.

Owner
Angad Bajwa
Angad Bajwa
A ssl analyzer which could analyzer target domain's certificate.

ssl_analyzer A ssl analyzer which could analyzer target domain's certificate. Analyze the domain name ssl certificate information according to the inp

vincent 17 Dec 12, 2022
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

ZJU3DV 1.4k Jan 04, 2023
Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning"

CAPGNN Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning" Paper URL: https://ar

1 Mar 12, 2022
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

443 Jan 06, 2023
Planner_backend - Academic planner application designed for students and counselors.

Planner (backend) Academic planner application designed for students and advisors.

2 Dec 31, 2021
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
Self-supervised learning optimally robust representations for domain generalization.

OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo

Yangjun Ruan 18 Aug 25, 2022
Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)

Compressive Visual Representations This repository contains the source code for our paper, Compressive Visual Representations. We developed informatio

Google Research 30 Nov 23, 2022
Everything you want about DP-Based Federated Learning, including Papers and Code. (Mechanism: Laplace or Gaussian, Dataset: femnist, shakespeare, mnist, cifar-10 and fashion-mnist. )

Differential Privacy (DP) Based Federated Learning (FL) Everything about DP-based FL you need is here. (所有你需要的DP-based FL的信息都在这里) Code Tip: the code o

wenzhu 83 Dec 24, 2022
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering

Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering This repository provides the source code of "Consensus Learning

SeongKu-Kang 6 Apr 29, 2022
NeuralCompression is a Python repository dedicated to research of neural networks that compress data

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video c

Facebook Research 297 Jan 06, 2023
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022
MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

Burak Bagatarhan 12 Mar 29, 2022
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Tim Ansell 70 Nov 04, 2022
A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

A script written in Python that returns a consensus string and profile matrix of a given DNA string(s) in FASTA format.

Zain 1 Feb 01, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 226 Dec 29, 2022