Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

Overview

SEDE

sede ci

SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description. It's based on a real usage of users from the Stack Exchange Data Explorer platform, which brings complexities and challenges never seen before in any other semantic parsing dataset like including complex nesting, dates manipulation, numeric and text manipulation, parameters, and most importantly: under-specification and hidden-assumptions.

Paper (NLP4Prog workshop at ACL2021): Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data.


sede sql

Setup Instructions

Create a new Python 3.7 virtual environment:

python3.7 -m venv .venv

Activate the virtual environment:

source .venv/bin/activate

Install dependencies:

pip install -r requirements.txt

Add the project directory to python PATH:

export PYTHONPATH=/your/projects-directories/sede:$PYTHONPATH

One can run all commands by just running make command, or running them step by step by the following commands:

Run pylint:

make lint

Run black:

make black_check

Run tests (required JSQL running for this - please see "Running JSQLParser" chapter):

make unit_test

Add the virtual environment to Jupyter Notebook:

python3.7 -m ipykernel install --user --name=.venv

Now you can enter into Jupyter with the command jupyter notebook and when creating a new notebook you will need to choose the .venv environment.

Folders Navigation

  • src - source code
  • configs - contains configuration files for running experiments
  • data/sede - train/val/test sets of SEDE. Note - files with the _original suffix are the ones that we kept original as coming from SEDE without our fixes. See our paper for more details.
  • notebooks - some helper Jupyter notebooks.
  • stackexchange_schema - holds file that respresents the SEDE schema.

Running JSQLParser

Clone JSQLParser-as-a-Service project: git clone https://github.com/hirupert/jsqlparser-as-a-service.git

Enter the folder with cd jsqlparser-as-a-service

Build the JSQLParser-as-a-Service image using the following command: docker build -t jsqlparser-as-a-service .

Running the image inside a docker container in port 8079: docker run -d -p 8079:8079 jsqlparser-as-a-service

Test that the docker is running by running the following command:

curl --location --request POST 'http://localhost:8079/sqltojson' \
--header 'Content-Type: application/json' \
--data-raw '{
    "sql":"select salary from employees where salary < (select max(salary) from employees)"
}'

Training T5 model

Training SEDE:

python main_allennlp.py train configs/t5_text2sql_sede.jsonnet -s experiments/name_of_experiment --include-package src

Training Spider:

In order to run our model + Partial Components Match F1 metric on Spider dataset, one must download Spider dataset from here: https://yale-lily.github.io/spider and save it under data/spider folder inside the root project directory. After that, one can run the following command in order to train our model on Spider dataset:

python main_allennlp.py train configs/t5_text2sql_spider.jsonnet -s experiments/name_of_experiment --include-package src

Evaluation (SEDE)

Run evaluation on SEDE validation set with:

python main_allennlp.py evaluate experiments/name_of_experiment data/sede/val.jsonl --output-file experiments/name_of_experiment/val_predictions.sql --cuda-device 0 --batch-size 10 --include-package src

Run evaluation on SEDE test set with:

python main_allennlp.py evaluate experiments/name_of_experiment data/sede/test.jsonl --output-file experiments/name_of_experiment/test_predictions.sql --cuda-device 0 --batch-size 10 --include-package src

Note - In order to evaluate a trained model on Spider, one needs to replace the experiment name and the data path to: data/spider/dev.json.

Inference (SEDE)

Predict SQL queries on SEDE validation set with:

python main_allennlp.py predict experiments/name_of_experiment data/sede/val.jsonl --output-file experiments/name_of_experiment/val_predictions.sql --use-dataset-reader --predictor seq2seq2 --cuda-device 0 --batch-size 10 --include-package src

Predict SQL queries on SEDE test set with:

python main_allennlp.py predict experiments/name_of_experiment data/sede/test.jsonl --output-file experiments/name_of_experiment/val_predictions.sql --use-dataset-reader --predictor seq2seq2 --cuda-device 0 --batch-size 10 --include-package src

Note - In order to run inference with a trained model on Spider (validation set), one needs to replace the experiment name and the data path to: data/spider/dev.json.

Acknowledgements

We thank Kevin Montrose and the rest of the Stack Exchange team for providing the raw query log.

Owner
Rupert.
Rupert.
Elevation Mapping on GPU.

Elevation Mapping cupy Overview This is a ros package of elevation mapping on GPU. Code are written in python and uses cupy for GPU calculation. * pla

Robotic Systems Lab - Legged Robotics at ETH Zürich 183 Dec 19, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Pixel-Perfect Structure-from-Motion with Featuremetric Refinement (ICCV 2021, Oral)

Pixel-Perfect Structure-from-Motion (ICCV 2021 Oral) We introduce a framework that improves the accuracy of Structure-from-Motion by refining keypoint

Computer Vision and Geometry Lab 831 Dec 29, 2022
Categorizing comments on YouTube into different categories.

Youtube Comments Categorization This repo is for categorizing comments on a youtube video into different categories. negative (grievances, complaints,

Rhitik 5 Nov 26, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms

A Closer Look at Invalid Action Masking in Policy Gradient Algorithms This repo contains the source code to reproduce the results in the paper A Close

Costa Huang 73 Dec 24, 2022
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Xi Yang 92 Jan 04, 2023
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code

Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.

Yasunori Shimura 7 Jul 27, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
Code release for NeuS

NeuS We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inpu

Peng Wang 813 Jan 04, 2023
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

FFD Source Code Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face M

88 Nov 22, 2022
Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs

Context-Aware-Healthcare Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs Download

LuChang 9 Dec 26, 2022
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
Code for paper "Learning to Reweight Examples for Robust Deep Learning"

learning-to-reweight-examples Code for paper Learning to Reweight Examples for Robust Deep Learning. [arxiv] Environment We tested the code on tensorf

Uber Research 261 Jan 01, 2023
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023