Code for SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations

Related tags

Deep Learningsimmc2
Overview

The Second Situated Interactive MultiModal Conversations (SIMMC 2.0) Challenge 2021

Welcome to the Second Situated Interactive Multimodal Conversations (SIMMC 2.0) Track for DSTC10 2021.

The SIMMC challenge aims to lay the foundations for the real-world assistant agents that can handle multimodal inputs, and perform multimodal actions. Similar to the First SIMMC challenge (as part of DSTC9), we focus on the task-oriented dialogs that encompass a situated multimodal user context in the form of a co-observed & immersive virtual reality (VR) environment. The conversational context is dynamically updated on each turn based on the user actions (e.g. via verbal interactions, navigation within the scene). For this challenge, we release a new Immersive SIMMC 2.0 dataset in the shopping domains: furniture and fashion.

Organizers: Seungwhan Moon, Satwik Kottur, Paul A. Crook, Ahmad Beirami, Babak Damavandi, Alborz Geramifard

Example from SIMMC

Example from SIMMC-Furniture Dataset

Latest News

  • [June 14, 2021] Challenge announcement. Training / development datasets (SIMMC v2.0) are released.

Important Links

Timeline

Date Milestone
June 14, 2021 Training & development data released
Sept 24, 2021 Test-Std data released, End of Challenge Phase 1
Oct 1, 2021 Entry submission deadline, End of Challenge Phase 2
Oct 8, 2021 Final results announced

Track Description

Tasks and Metrics

We present four sub-tasks primarily aimed at replicating human-assistant actions in order to enable rich and interactive shopping scenarios.

Sub-Task #1 Multimodal Disambiguation
Goal To classify if the assistant should disambiguate in the next turn
Input Current user utterance, Dialog context, Multimodal context
Output Binary label
Metrics Binary classification accuracy
Sub-Task #2 Multimodal Coreference Resolution
Goal To resolve referent objects to thier canonical ID(s) as defined by the catalog.
Input Current user utterance with objection mentions, Dialog context, Multimodal context
Output Canonical object IDs
Metrics Coref F1 / Precision / Recall
Sub-Task #3 Multimodal Dialog State Tracking (MM-DST)
Goal To track user belief states across multiple turns
Input Current user utterance, Dialogue context, Multimodal context
Output Belief state for current user utterance
Metrics Slot F1, Intent F1
Sub-Task #4 Multimodal Dialog Response Generation & Retrieval
Goal To generate Assistant responses or retrieve from a candidate pool
Input Current user utterance, Dialog context, Multimodal context, (Ground-truth API Calls)
Output Assistant response utterance
Metrics Generation: BLEU-4, Retrieval: MRR, [email protected], [email protected], [email protected], Mean Rank

Please check the task input file for a full description of inputs for each subtask.

Evaluation

For the DSTC10 SIMMC Track, we will do a two phase evaluation as follows.

Challenge Period 1: Participants will evaluate the model performance on the provided devtest set. At the end of Challenge Period 1 (Sept 24), we ask participants to submit their model prediction results and a link to their code repository.

Challenge Period 2: A test-std set will be released on Sept 28 for the participants who submitted the results for the Challenge Period 1. We ask participants to submit their model predictions on the test-std set by Oct 1. We will announce the final results and the winners on Oct 8.

Challenge Instructions

(1) Challenge Registration

  • Fill out this form to register at DSTC10. Check “Track 3: SIMMC 2.0: Situated Interactive Multimodal Conversational AI” along with other tracks you are participating in.

(2) Download Datasets and Code

  • Irrespective of participation in the challenge, we'd like to encourge those interested in this dataset to complete this optional survey. This will also help us communicate any future updates on the codebase, the datasets, and the challenge track.

  • Git clone our repository to download the datasets and the code. You may use the provided baselines as a starting point to develop your models.

$ git lfs install
$ git clone https://github.com/facebookresearch/simmc2.git

(3) Reporting Results for Challenge Phase 1

  • Submit your model prediction results on the devtest set, following the submission instructions.
  • We will release the test-std set (with ground-truth labels hidden) on Sept 24.

(4) Reporting Results for Challenge Phase 2

  • Submit your model prediction results on the test-std set, following the submission instructions.
  • We will evaluate the participants’ model predictions using the same evaluation script for Phase 1, and announce the results.

Contact

Questions related to SIMMC Track, Data, and Baselines

Please contact [email protected], or leave comments in the Github repository.

DSTC Mailing List

If you want to get the latest updates about DSTC10, join the DSTC mailing list.

Citations

If you want to publish experimental results with our datasets or use the baseline models, please cite the following articles:

@article{kottur2021simmc,
  title={SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations},
  author={Kottur, Satwik and Moon, Seungwhan and Geramifard, Alborz and Damavandi, Babak},
  journal={arXiv preprint arXiv:2104.08667},
  year={2021}
}

NOTE: The paper above describes in detail the datasets, the collection process, and some of the baselines we provide in this challenge. The paper reports the results from an earlier version of the dataset and with different train-dev-test splits, hence the baseline performances on the challenge resources will be slightly different.

License

SIMMC 2.0 is released under CC-BY-NC-SA-4.0, see LICENSE for details.

Owner
Facebook Research
Facebook Research
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz

55 Jun 18, 2022
[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

RegionProxy Figure 2. Performance vs. GFLOPs on ADE20K val split. Semantic Segmentation by Early Region Proxy Yifan Zhang, Bo Pang, Cewu Lu CVPR 2022

Yifan 54 Nov 29, 2022
Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
基于tensorflow 2.x的图片识别工具集

Classification.tf2 基于tensorflow 2.x的图片识别工具集 功能 粗粒度场景图片分类 细粒度场景图片分类 其他场景图片分类 模型部署 tensorflow serving本地推理和docker部署 tensorRT onnx ... 数据集 https://hyper.a

Wei Qi 1 Nov 03, 2021
Code for EMNLP2021 paper "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training"

VoCapXLM Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Environment DockerFile: dancingso

Bo Zheng 15 Jul 28, 2022
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
basic tutorial on pytorch

Quick Tutorial on PyTorch PyTorch Basics Linear Regression Logistic Regression Artificial Neural Networks Convolutional Neural Networks Recurrent Neur

7 Sep 15, 2022
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Seunghyun Lee 12 Oct 18, 2022
Emotion classification of online comments based on RNN

emotion_classification Emotion classification of online comments based on RNN, the accuracy of the model in the test set reaches 99% data: Large Movie

1 Nov 23, 2021
Least Square Calibration for Peer Reviews

Least Square Calibration for Peer Reviews Requirements gurobipy - for solving convex programs GPy - for Bayesian baseline numpy pandas To generate p

Sigma <a href=[email protected]"> 1 Nov 01, 2021
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
Flybirds - BDD-driven natural language automated testing framework, present by Trip Flight

Flybird | English Version 行为驱动开发(Behavior-driven development,缩写BDD),是一种软件过程的思想或者

Ctrip, Inc. 706 Dec 30, 2022
This is the official github repository of the Met dataset

The Met dataset This is the official github repository of the Met dataset. The official webpage of the dataset can be found here. What is it? This cod

Nikolaos-Antonios Ypsilantis 35 Dec 17, 2022
Neural Articulated Radiance Field

Neural Articulated Radiance Field NARF Neural Articulated Radiance Field Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada ICCV 2021 [Paper] [Co

Atsuhiro Noguchi 144 Jan 03, 2023
A repo for Causal Imitation Learning under Temporally Correlated Noise

CausIL A repo for Causal Imitation Learning under Temporally Correlated Noise. Running Experiments To re-train an expert, run: python experts/train_ex

Gokul Swamy 5 Nov 01, 2022
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021