Code for SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations

Related tags

Deep Learningsimmc2
Overview

The Second Situated Interactive MultiModal Conversations (SIMMC 2.0) Challenge 2021

Welcome to the Second Situated Interactive Multimodal Conversations (SIMMC 2.0) Track for DSTC10 2021.

The SIMMC challenge aims to lay the foundations for the real-world assistant agents that can handle multimodal inputs, and perform multimodal actions. Similar to the First SIMMC challenge (as part of DSTC9), we focus on the task-oriented dialogs that encompass a situated multimodal user context in the form of a co-observed & immersive virtual reality (VR) environment. The conversational context is dynamically updated on each turn based on the user actions (e.g. via verbal interactions, navigation within the scene). For this challenge, we release a new Immersive SIMMC 2.0 dataset in the shopping domains: furniture and fashion.

Organizers: Seungwhan Moon, Satwik Kottur, Paul A. Crook, Ahmad Beirami, Babak Damavandi, Alborz Geramifard

Example from SIMMC

Example from SIMMC-Furniture Dataset

Latest News

  • [June 14, 2021] Challenge announcement. Training / development datasets (SIMMC v2.0) are released.

Important Links

Timeline

Date Milestone
June 14, 2021 Training & development data released
Sept 24, 2021 Test-Std data released, End of Challenge Phase 1
Oct 1, 2021 Entry submission deadline, End of Challenge Phase 2
Oct 8, 2021 Final results announced

Track Description

Tasks and Metrics

We present four sub-tasks primarily aimed at replicating human-assistant actions in order to enable rich and interactive shopping scenarios.

Sub-Task #1 Multimodal Disambiguation
Goal To classify if the assistant should disambiguate in the next turn
Input Current user utterance, Dialog context, Multimodal context
Output Binary label
Metrics Binary classification accuracy
Sub-Task #2 Multimodal Coreference Resolution
Goal To resolve referent objects to thier canonical ID(s) as defined by the catalog.
Input Current user utterance with objection mentions, Dialog context, Multimodal context
Output Canonical object IDs
Metrics Coref F1 / Precision / Recall
Sub-Task #3 Multimodal Dialog State Tracking (MM-DST)
Goal To track user belief states across multiple turns
Input Current user utterance, Dialogue context, Multimodal context
Output Belief state for current user utterance
Metrics Slot F1, Intent F1
Sub-Task #4 Multimodal Dialog Response Generation & Retrieval
Goal To generate Assistant responses or retrieve from a candidate pool
Input Current user utterance, Dialog context, Multimodal context, (Ground-truth API Calls)
Output Assistant response utterance
Metrics Generation: BLEU-4, Retrieval: MRR, [email protected], [email protected], [email protected], Mean Rank

Please check the task input file for a full description of inputs for each subtask.

Evaluation

For the DSTC10 SIMMC Track, we will do a two phase evaluation as follows.

Challenge Period 1: Participants will evaluate the model performance on the provided devtest set. At the end of Challenge Period 1 (Sept 24), we ask participants to submit their model prediction results and a link to their code repository.

Challenge Period 2: A test-std set will be released on Sept 28 for the participants who submitted the results for the Challenge Period 1. We ask participants to submit their model predictions on the test-std set by Oct 1. We will announce the final results and the winners on Oct 8.

Challenge Instructions

(1) Challenge Registration

  • Fill out this form to register at DSTC10. Check “Track 3: SIMMC 2.0: Situated Interactive Multimodal Conversational AI” along with other tracks you are participating in.

(2) Download Datasets and Code

  • Irrespective of participation in the challenge, we'd like to encourge those interested in this dataset to complete this optional survey. This will also help us communicate any future updates on the codebase, the datasets, and the challenge track.

  • Git clone our repository to download the datasets and the code. You may use the provided baselines as a starting point to develop your models.

$ git lfs install
$ git clone https://github.com/facebookresearch/simmc2.git

(3) Reporting Results for Challenge Phase 1

  • Submit your model prediction results on the devtest set, following the submission instructions.
  • We will release the test-std set (with ground-truth labels hidden) on Sept 24.

(4) Reporting Results for Challenge Phase 2

  • Submit your model prediction results on the test-std set, following the submission instructions.
  • We will evaluate the participants’ model predictions using the same evaluation script for Phase 1, and announce the results.

Contact

Questions related to SIMMC Track, Data, and Baselines

Please contact [email protected], or leave comments in the Github repository.

DSTC Mailing List

If you want to get the latest updates about DSTC10, join the DSTC mailing list.

Citations

If you want to publish experimental results with our datasets or use the baseline models, please cite the following articles:

@article{kottur2021simmc,
  title={SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations},
  author={Kottur, Satwik and Moon, Seungwhan and Geramifard, Alborz and Damavandi, Babak},
  journal={arXiv preprint arXiv:2104.08667},
  year={2021}
}

NOTE: The paper above describes in detail the datasets, the collection process, and some of the baselines we provide in this challenge. The paper reports the results from an earlier version of the dataset and with different train-dev-test splits, hence the baseline performances on the challenge resources will be slightly different.

License

SIMMC 2.0 is released under CC-BY-NC-SA-4.0, see LICENSE for details.

Owner
Facebook Research
Facebook Research
VideoGPT: Video Generation using VQ-VAE and Transformers

VideoGPT: Video Generation using VQ-VAE and Transformers [Paper][Website][Colab][Gradio Demo] We present VideoGPT: a conceptually simple architecture

Wilson Yan 470 Dec 30, 2022
Code for paper "Learning to Reweight Examples for Robust Deep Learning"

learning-to-reweight-examples Code for paper Learning to Reweight Examples for Robust Deep Learning. [arxiv] Environment We tested the code on tensorf

Uber Research 261 Jan 01, 2023
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning DouZero is a reinforcement learning framework for DouDizhu (斗地主), t

Kwai Inc. 3.1k Jan 04, 2023
Meaningful titles for tabs and PDF downloads! Also supports tab search.

arxiv-utils If you are a researcher that reads a lot on ArXiv, you'll benefit a lot from this web extension. Renames the title of PDF page to the pape

Johnson 174 Dec 20, 2022
Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

98 Dec 26, 2022
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
Learn about Spice.ai with in-depth samples

Samples Learn about Spice.ai with in-depth samples ServerOps - Learn when to run server maintainance during periods of low load Gardener - Intelligent

Spice.ai 16 Mar 23, 2022
This repo includes the supplementary of our paper "CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels"

Supplementary Materials for CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels This repository includes all supplementary mater

Zhiwei Li 0 Jan 05, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
Simulation of the solar system using various nummerical methods

solar-system Simulation of the solar system using various nummerical methods Download the repo Make shure matplotlib, scipy etc. are installed execute

Caspar 7 Jul 15, 2022
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals, CVPR2021

End-to-End Object Detection with Learnable Proposal, CVPR2021

Peize Sun 1.2k Dec 27, 2022
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt

Gengshan Yang 144 Dec 06, 2022
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023