💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Overview

Perspective-taking and Pragmatics for Generating
Empathetic Responses Focused on Emotion Causes

figure

Official PyTorch implementation and EmoCause evaluation set of our EMNLP 2021 paper 💛
Hyunwoo Kim, Byeongchang Kim, and Gunhee Kim. Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes. EMNLP, 2021 [Paper]

  • TL;DR: In order to express deeper empathy in dialogues, we argue that responses should focus on the cause of emotions. Inspired by perspective-taking of humans, we propose a generative emotion estimator (GEE) which can recognize emotion cause words solely based on sentence-level emotion labels without word-level annotations (i.e., weak-supervision). To evaluate our approach, we annotate emotion cause words and release the EmoCause evaluation set. We also propose a pragmatics-based method for generating responses focused on targeted words from the context.

Reference

If you use the materials in this repository as part of any published research, we ask you to cite the following paper:

@inproceedings{Kim:2021:empathy,
  title={Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes},
  author={Kim, Hyunwoo and Kim, Byeongchang and Kim, Gunhee},
  booktitle={EMNLP},
  year=2021
}

Implementation

System Requirements

  • Python 3.7.9
  • Pytorch 1.6.0
  • CUDA 10.2 supported GPU with at least 24GB memory
  • See environment.yml for details

Environment setup

Our code is built on the ParlAI framework. We recommend you create a conda environment as follows

conda env create -f environment.yml

and activate it with

conda activate focused-empathy
python -m spacy download en

EmoCause evaluation set for weakly-supervised emotion cause recognition

EmoCause is a dataset of annotated emotion cause words in emotional situations from the EmpatheticDialogues valid and test set. The goal is to recognize emotion cause words in sentences by training only on sentence-level emotion labels without word-level labels (i.e., weakly-supervised emotion cause recognition). EmoCause is based on the fact that humans do not recognize the cause of emotions with supervised learning on word-level cause labels. Thus, we do not provide a training set.

figure

You can download the EmoCause eval set [here].
Note, the dataset will be downloaded automatically when you run the experiment command below.

Data statistics and structure

#Emotion Label type #Label/Utterance #Utterance
EmoCause 32 Word 2.3 4.6K
{
  "original_situation": the original situations in the EmpatheticDialogues,
  "tokenized_situation": tokenized situation utterances using spacy,
  "emotion": emotion labels,
  "conv_id": id for each corresponding conversation in EmpatheticDialogues,
  "annotation": list of tuples: (emotion cause word, index),
  "labels": list of strings containing the emotion cause words
}

Running Experiments

All corresponding models will be downloaded automatically when running the following commands.
We also provide manual download links: [GEE] [Finetuned Blender]

Weakly-supervised emotion cause word recognition with GEE on EmoCause

You can evaluate our proposed Generative Emotion Estimator (GEE) on the EmoCause eval set.

python eval_emocause.py --model agents.gee_agent:GeeCauseInferenceAgent --fp16 False

Focused empathetic response generation with finetuned Blender on EmpatheticDialogues

You can evaluate our approach for generating focused empathetic responses on top of a finetuned Blender (Not familiar with Blender? See here!).

python eval_empatheticdialogues.py --model agents.empathetic_gee_blender:EmpatheticBlenderAgent --model_file data/models/finetuned_blender90m/model --fp16 False --empathy-score False

Adding the --alpha 0 flag will run the Blender without pragmatics. You can also try the random distractor (Plain S1) by adding --distractor-type random.

?? To measure the Interpretation and Exploration scores also, set the --empathy-score to True. It will automatically download the RoBERTa models finetuned on EmpatheticDialogues. For more details on empathy scores, visit the original repo.

Acknowledgements

We thank the anonymous reviewers for their helpful comments on this work.

This research was supported by Samsung Research Funding Center of Samsung Electronics under project number SRFCIT210101. The compute resource and human study are supported by Brain Research Program by National Research Foundation of Korea (NRF) (2017M3C7A1047860).

Have any question?

Please contact Hyunwoo Kim at hyunw.kim at vl dot snu dot ac dot kr.

License

This repository is MIT licensed. See the LICENSE file for details.

Owner
Hyunwoo Kim
PhD student at Seoul National University CSE
Hyunwoo Kim
code for Grapadora research paper experimentation

Road feature embedding selection method Code for research paper experimentation Abstract Traffic forecasting models rely on data that needs to be sens

Eric López Manibardo 0 May 26, 2022
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
Deep Learning Theory

Deep Learning Theory 整理了一些深度学习的理论相关内容,持续更新。 Overview Recent advances in deep learning theory 总结了目前深度学习理论研究的六个方向的一些结果,概述型,没做深入探讨(2021)。 1.1 complexity

fq 103 Jan 04, 2023
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T

24 Oct 26, 2022
Activating More Pixels in Image Super-Resolution Transformer

HAT [Paper Link] Activating More Pixels in Image Super-Resolution Transformer Xiangyu Chen, Xintao Wang, Jiantao Zhou and Chao Dong BibTeX @article{ch

XyChen 270 Dec 27, 2022
Easy way to add GoogleMaps to Flask applications. maintainer: @getcake

Flask Google Maps Easy to use Google Maps in your Flask application requires Jinja Flask A google api key get here Contribute To contribute with the p

Flask Extensions 611 Dec 05, 2022
Creating multimodal multitask models

Fusion Brain Challenge The English version of the document can be found here. Обновления 01.11 Мы выкладываем пример данных, аналогичных private test

Sber AI 43 Nov 28, 2022
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
Implementation for NeurIPS 2021 Submission: SparseFed

READ THIS FIRST This repo is an anonymized version of an existing repository of GitHub, for the AIStats 2021 submission: SparseFed: Mitigating Model P

2 Jun 15, 2022
A DeepStack custom model for detecting common objects in dark/night images and videos.

DeepStack_ExDark This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for d

MOSES OLAFENWA 98 Dec 24, 2022
DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download

Bubbliiiing 31 Nov 25, 2022
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
Official PyTorch implementation for paper "Efficient Two-Stage Detection of Human–Object Interactions with a Novel Unary–Pairwise Transformer"

UPT: Unary–Pairwise Transformers This repository contains the official PyTorch implementation for the paper Frederic Z. Zhang, Dylan Campbell and Step

Frederic Zhang 109 Dec 20, 2022
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023
YKKDetector For Python

YKKDetector OpenCVを利用した機械学習データをもとに、VRChatのスクリーンショットなどからYKKさん(もとい「幽狐族のお姉様」)を検出できるソフトウェアです。 マニュアル こちらから実行環境のセットアップから解説する詳細なマニュアルをご覧いただけます。 ライセンス 本ソフトウェア

あんふぃとらいと 5 Dec 07, 2021
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

万理 5 Jul 26, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022