[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Overview

Robot Action Primitives (RAPS)

This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action Primitives (RAPS).

[Project Website]

Murtaza Dalal, Deepak Pathak*, Ruslan Salakhutdinov*
(* equal advising)

CMU

alt text

If you find this work useful in your research, please cite:

@inproceedings{dalal2021raps,
    Author = {Dalal, Murtaza and Pathak, Deepak and
              Salakhutdinov, Ruslan},
    Title = {Accelerating Robotic Reinforcement Learning via Parameterized Action Primitives},
    Booktitle = {NeurIPS},
    Year = {2021}
}

Requirements

To install dependencies, please run the following commands:

sudo apt-get update
sudo apt-get install curl \
    git \
    libgl1-mesa-dev \
    libgl1-mesa-glx \
    libglew-dev \
    libosmesa6-dev \
    software-properties-common \
    net-tools \
    unzip \
    vim \
    virtualenv \
    wget \
    xpra \
    xserver-xorg-dev
sudo apt-get install libglfw3-dev libgles2-mesa-dev patchelf
sudo mkdir /usr/lib/nvidia-000

Please add the following to your bashrc:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.mujoco/mujoco200/bin
export MUJOCO_GL='egl'
export MKL_THREADING_LAYER=GNU
export D4RL_SUPPRESS_IMPORT_ERROR='1'
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/nvidia-000

To install python requirements:

conda create -n raps python=3.7
conda activate raps
./setup_python_env.sh <absolute path to raps>

Training and Evaluation

Kitchen

Prior to running any experiments, make sure to run cd /path/to/raps/rlkit

single task env names:

  • microwave
  • kettle
  • slide_cabinet
  • hinge_cabinet
  • light_switch
  • top_left_burner

multi task env names:

  • microwave_kettle_light_top_left_burner //Sequential Multi Task 1
  • hinge_slide_bottom_left_burner_light //Sequential Multi Task 2

To train RAPS with Dreamer on any single task kitchen environment, run:

python experiments/kitchen/dreamer/dreamer_v2_single_task_primitives.py --mode here_no_doodad --exp_prefix <> --env <env name>

To train RAPS with Dreamer on the multi task kitchen environments, run:

python experiments/kitchen/dreamer/dreamer_v2_multi_task_primitives.py --mode here_no_doodad --exp_prefix <> --env <env name>

To train Raw Actions with Dreamer on any kitchen environment

python experiments/kitchen/dreamer/dreamer_v2_raw_actions.py --mode here_no_doodad --exp_prefix <> --env <env name>

To train RAPS with RAD on any single task kitchen environment

python experiments/kitchen/rad/rad_single_task_primitives.py --mode here_no_doodad --exp_prefix <> --env <env name>

To train RAPS with RAD on any multi task kitchen environment

python experiments/kitchen/rad/rad_multi_task_primitives.py --mode here_no_doodad --exp_prefix <> --env <env name>

To train Raw Actions with RAD on any kitchen environment

python experiments/kitchen/rad/rad_raw_actions.py --mode here_no_doodad --exp_prefix <> --env <env name>

To train RAPS with PPO on any single task kitchen environment

python experiments/kitchen/ppo/ppo_single_task_primitives.py --mode here_no_doodad --exp_prefix <> --env <env name>

To train RAPS with PPO on any multi task kitchen environment

python experiments/kitchen/ppo/ppo_multi_task_primitives.py --mode here_no_doodad --exp_prefix <> --env <env name>

To train Raw Actions with PPO on any kitchen environment

python experiments/kitchen/ppo/ppo_raw_actions.py --mode here_no_doodad --exp_prefix <> --env <env name>

Metaworld

single task env names

  • drawer-close-v2
  • soccer-v2
  • peg-unplug-side-v2
  • sweep-into-v2
  • assembly-v2
  • disassemble-v2

To train RAPS with Dreamer on any metaworld environment

python experiments/metaworld/dreamer/dreamer_v2_single_task_primitives.py --mode here_no_doodad --exp_prefix <> --env <env name>

To train Raw Actions with Dreamer on any metaworld environment

python experiments/metaworld/dreamer/dreamer_v2_single_task_raw_actions.py --mode here_no_doodad --exp_prefix <> --env <env name>

Robosuite

To train RAPS with Dreamer on an Robosuite Lift

python experiments/robosuite/dreamer/dreamer_v2_single_task_primitives_lift.py --mode here_no_doodad --exp_prefix <>

To train Raw Actions with Dreamer on an Robosuite Lift

python experiments/robosuite/dreamer/dreamer_v2_single_task_raw_actions_lift.py --mode here_no_doodad --exp_prefix <>

To train RAPS with Dreamer on an Robosuite Door

python experiments/robosuite/dreamer/dreamer_v2_single_task_primitives_door.py --mode here_no_doodad --exp_prefix <>

To train Raw Actions with Dreamer on an Robosuite Door

python experiments/robosuite/dreamer/dreamer_v2_single_task_raw_actions_door.py --mode here_no_doodad --exp_prefix <>

Learning Curve visualization

cd /path/to/raps/rlkit
python ../viskit/viskit/frontend.py data/<exp_prefix> //open localhost:5000 to view
Owner
Murtaza Dalal
Passionate about Machine Learning, Computer Vision, Robotics, and AI. Interested in seamlessly integrating software and hardware into into intelligent systems.
Murtaza Dalal
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

🌟 Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models

DSEE Codes for [Preprint] DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Ch

VITA 4 Dec 27, 2021
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc

103 Jan 06, 2023
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax

Simple Transformer An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax. Note: The only ex

29 Jun 16, 2022
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022
[SIGGRAPH Asia 2021] Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN

Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN [Paper] [Project Website] [Output resutls] Official Pytorch i

Badour AlBahar 215 Dec 17, 2022
RL agent to play μRTS with Stable-Baselines3

Gym-μRTS with Stable-Baselines3/PyTorch This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS usin

Oleksii Kachaiev 24 Nov 11, 2022
PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

MoCo v3 for Self-supervised ResNet and ViT Introduction This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT. The original M

Facebook Research 887 Jan 08, 2023
A pytorch-based deep learning framework for multi-modal 2D/3D medical image segmentation

A 3D multi-modal medical image segmentation library in PyTorch We strongly believe in open and reproducible deep learning research. Our goal is to imp

Adaloglou Nikolas 1.2k Dec 27, 2022
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
PyTorch implementation for ACL 2021 paper "Maria: A Visual Experience Powered Conversational Agent".

Maria: A Visual Experience Powered Conversational Agent This repository is the Pytorch implementation of our paper "Maria: A Visual Experience Powered

Jokie 22 Dec 12, 2022
Dados coletados e programas desenvolvidos no processo de iniciação científica

Iniciacao_cientifica_FAPESP_2020-14845-6 Dados coletados e programas desenvolvidos no processo de iniciação científica Os arquivos .py são os programa

1 Jan 10, 2022
The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway

Openspoor The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch

7 Aug 22, 2022
A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

Mika 251 Dec 08, 2022
Official PyTorch implementation of the NeurIPS 2021 paper StyleGAN3

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Eugenio Herrera 92 Nov 18, 2022
An implementation of Deep Graph Infomax (DGI) in PyTorch

DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom

Petar Veličković 491 Jan 03, 2023