Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".

Overview

Real-time stock predictions with deep learning and news scraping

This repository contains a partial implementation of my bachelor's thesis "Real-time stock predictions with deep learning and news scraping". The code has been built using PyTorch Lightning, read its documentation to get a complete overview of how this repository is structured.

Disclaimer: Neither the pipeline nor the model published in this repository are the ones used in the thesis. On the pipeline side, notice that the model tries to match headlines and prices of the same day, while in the thesis we used news published the day before. For the case of the model, the one shared here has nothing to do with the original and should be considered a toy model.

Preparing the data

The data used in the thesis has been completely crawled and put together from scratch. Specifically, you can find the titles and descriptions of the news published on Reuters.com from January 2010 to May 2018. In addition to that, you also have the stock prices (end of the day) of S&P 500 companies extracted from AlphaVantage.co. Everything is compressed in a H5DF file that you can download from this link.

The first step is to clone this repository and install its dependencies:

git clone https://github.com/davidalvarezdlt/bachelor_thesis.git
cd bachelor_thesis
pip install -r requirements.txt

Move both bachelor_thesis_data.hdf5 and word2vec.bin inside ./data. The resulting folder structure should look like this:

bachelor_thesis/
    bachelor_thesis/
    data/
        bachelor_thesis_data.hdf5
        word2vec.bin
    lightning_logs/
    .gitignore
    .pre-commit-config.yaml
    LICENSE
    README.md
    requirements.txt

Training the model

In short, you can train the model by calling:

python -m bachelor_thesis

You can modify the default parameters of the code by using CLI parameters. Get a complete list of the available parameters by calling:

python -m bachelor_thesis --help

For instance, if we want to train the model using GOOGL stock prices, with a batch size of 32 and using one GPUs, we would call:

python -m bachelor_thesis --symbol GOOGL --batch_size 32 --gpus 1

Every time you train the model, a new folder inside ./lightning_logs will be created. Each folder represents a different version of the model, containing its checkpoints and auxiliary files.

Testing the model

You can measure the loss and the accuracy of the model (number of times the prediction is correct) and store it in TensorBoard by calling:

python -m bachelor_thesis --test --test_checkpoint <test_checkpoint>

Where --test_checkpoint is a valid path to the model checkpoint that should be used.

Citation

If you use the data provided in this repository or if you find this thesis useful, please use the following citation:

@thesis{Alvarez2018,
    type = {Bachelor's Thesis},
    author = {David Álvarez de la Torre},
    title = {Real-time stock predictions with Deep Learning and news scrapping},
    school = {Universitat Politècnica de Catalunya},
    year = 2018,
}
Owner
David Álvarez de la Torre
Founder of @lemonplot. Alumni of UPC and ETH.
David Álvarez de la Torre
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022
Complex Answer Generation For Conversational Search Systems.

Complex Answer Generation For Conversational Search Systems. Code for Does Structure Matter? Leveraging Data-to-Text Generation for Answering Complex

Hanane Djeddal 0 Dec 06, 2021
Scripts and a shader to get you started on setting up an exported Koikatsu character in Blender.

KK Blender Shader Pack A plugin and a shader to get you started with setting up an exported Koikatsu character in Blender. The plugin is a Blender add

166 Jan 01, 2023
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

Rendi Chevi 156 Jan 09, 2023
PyTorch implementation of EfficientNetV2

[NEW!] Check out our latest work involution accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. PyTo

Duo Li 375 Jan 03, 2023
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
🚩🚩🚩

My CTF Challenges 2021 AIS3 Pre-exam / MyFirstCTF Name Category Keywords Difficulty ⒸⓄⓋⒾⒹ-①⑨ (MyFirstCTF Only) Reverse Baby ★ Piano Reverse C#, .NET ★

6 Oct 28, 2021
4th place solution for the SIGIR 2021 challenge.

SIGIR-2021 (Tinkoff.AI) How to start Download train and test data: https://sigir-ecom.github.io/data-task.html Place it under sigir-2021/data/. Run py

Tinkoff.AI 4 Jul 01, 2022
OneShot Learning-based hotword detection.

EfficientWord-Net Hotword detection based on one-shot learning Home assistants require special phrases called hotwords to get activated (eg:"ok google

ANT-BRaiN 102 Dec 25, 2022
The missing CMake project initializer

cmake-init - The missing CMake project initializer Opinionated CMake project initializer to generate CMake projects that are FetchContent ready, separ

1k Jan 01, 2023
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
Attention mechanism with MNIST dataset

[TensorFlow] Attention mechanism with MNIST dataset Usage $ python run.py Result Training Loss graph. Test Each figure shows input digit, attention ma

YeongHyeon Park 12 Jun 10, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
Multiwavelets-based operator model

Multiwavelet model for Operator maps Gaurav Gupta, Xiongye Xiao, and Paul Bogdan Multiwavelet-based Operator Learning for Differential Equations In Ne

Gaurav 33 Dec 04, 2022
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context Code in both PyTorch and TensorFlow

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Jan 06, 2023