Automatic library of congress classification, using word embeddings from book titles and synopses.

Overview

Automatic Library of Congress Classification

The Library of Congress Classification (LCC) is a comprehensive classification system that was first developed in the late nineteenth and early twentieth centuries to organize and arrange the book collections of the Library of Congress. The vast complexity of this system has made manual book classification for it quite challenging and time-consuming. This is what has motivated research in automating this process, as can be seen in Larson RR (1992), Frank and Paynter (2004), and Ávila-Argüelles et al. (2010).

In this work we propose the usage of word embeddings, made possible by recent advances in NLP, to take advantage of the fairly rich semantic information that they provide. Usage of word embeddings allows us to effectively use the information in the synposis of the books which contains a great deal of information about the record. We hypothesize that the usage of word embeddings and incorporating synopses would yield better performance over the classifcation task, while also freeing us from relying on Library of Congress Subject Headings (LCSH), which are expensive annotations that previous work has used.

To test out our hypotheses we designed Naive Bayes classifiers, Support Vector Machines, Multi-Layer Perceptrons, and LSTMs to predict 15 of 21 Library of Congress classes. The LSTM model with large BERT embeddings outperformed all other models and was able to classify documents with 76% accuracy when trained on a document’s title and synopsis. This is competitive with previous models that classified documents using their Library of Congress Subject Headings.

For a more detailed explanation of our work, please see our project report.


Dependencies

To run our code, you need the following packages:

scikit-learn=1.0.1
pytorch=1.10.0
python=3.9.7
numpy=1.21.4
notebook=6.4.6
matplotlib=3.5.0
gensim=4.1.2
tqdm=4.62.3
transformers=4.13.0
nltk=3.6.5
pandas=1.3.4
seaborn=0.11.2

Checklist

  1. Install the python packages listed above with requirements.txt
$ pip install -r requirements.txt

or any other package manager you would like.

  1. Set PYTHONPATH to the root of this folder by running the command below at the root directory of the project.
$ export PYTHONPATH=$(PWD)
  1. Download the data needed from this link and put it in the project root folder. Make sure the folder is called github_data.

For the features (tf_idf, w2v, and BERT), you can also use the runner python scripts in "runner" folder to create features.

Use the command below to build all the features. The whole features preparation steps take around 2.5 hours.

$ python runner/build_all_features.py

Due to its large memory consumption, the process might crash along the way. If that's the case, please try again by running the same command. The script is able to pick up on where it left of.

Build each feature separately

BERT embeddings

$ python runner/build_bert_embeddings.py --model_size=small  

W2V embeddings

For this one, you will need to run the generate_w2v_embedddings.ipynb notebook.

tf-idf features

$ python runner/build_tfidf_features.py

If the download still fails, then please download the data directly from our Google Drive [Link] (BERT small and large unavailable).

Running the training code for non-sequential model

Starting point
The main notebook for running all the models is in this notebook [Link].
Note that the training process required preprocessed embeddings data which lies in "github_data" folder.

Caching
Note that once each model finishes fitting to the data, the code also stored the result model as a pickle file in the "_cache" folder.

Training code for sequential model

These notebooks for LSTM on BERT and word2vec ware all located in the report/nnn folder. (e.g., [Link].

The rnn codes (LSTM, GRU) can also be found in iml_group_proj/model/bert_[lstm|gpu].py

Contributors (in no specific order)

  • Katie Warburton - Researched previous automatic LCC attempts and found the dataset. Wrote the introduction and helped to write the discussion. Researched and understood the MARC 21 bibliographic standard to parse through the dataset and extract documents with an LCC, title, and synopsis. Balanced the dataset and split it into a train and test set. Described data balancing and the dataset in the report. - katie-warburton

  • Yujie Chen - Trained and assessed the performance of SVM models and reported the SVM and general model development approaches and relevant results. - Yujie-C

  • Teerapat Chaiwachirasak - Wrote the code for generating tf-idf features and BERT embeddings. Trained Naive Bayes and MLP on tf-idf features and BERT embeddings. Wrote training pipelines that take ML models from the whole team and train them together in one same workflow with multiple data settings (title only, synopsis only, and title + synopsis) to get a summarized and unified result. Trained LSTM models on BERT embeddings on (Google Collab). - Teerapat12

  • Ahmad Pourihosseini - Wrote the code for generating word2vec embeddings and its corresponding preprocessing and the code for MLP and LSTM models on these embeddings. Came up with and implemented the idea of visualizing the averaged embeddings. Wrote the parts of the report corresponding to these sections. - ahmad-PH

Owner
Ahmad Pourihosseini
Ahmad Pourihosseini
A curated list of neural rendering resources.

Awesome-of-Neural-Rendering A curated list of neural rendering and related resources. Please feel free to pull requests or open an issue to add papers

Zhiwei ZHANG 43 Dec 09, 2022
Steer OpenAI's Jukebox with Music Taggers

TagBox Steer OpenAI's Jukebox with Music Taggers! The closest thing we have to VQGAN+CLIP for music! Unsupervised Source Separation By Steering Pretra

Ethan Manilow 34 Nov 02, 2022
Code for "Continuous-Time Meta-Learning with Forward Mode Differentiation" (ICLR 2022)

Continuous-Time Meta-Learning with Forward Mode Differentiation ICLR 2022 (Spotlight) - Installation - Example - Citation This repository contains the

Tristan Deleu 25 Oct 20, 2022
The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"

Swin-Unet The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"(https://arxiv.org/abs/2105.05537). A validatio

869 Jan 07, 2023
Split your patch similarly to `git add -p` but supporting multiple buckets

split-patch.py This is git add -p on steroids for patches. Given a my.patch you can run ./split-patch.py my.patch You can choose in which bucket to p

102 Oct 06, 2022
2D&3D human pose estimation

Human Pose Estimation Papers [CVPR 2016] - 201511 [IJCAI 2016] - 201602 Other Action Recognition with Joints-Pooled 3D Deep Convolutional Descriptors

133 Jan 02, 2023
StyleGAN - Official TensorFlow Implementation

StyleGAN — Official TensorFlow Implementation Picture: These people are not real – they were produced by our generator that allows control over differ

NVIDIA Research Projects 13.1k Jan 09, 2023
Aligning Latent and Image Spaces to Connect the Unconnectable

About This repo contains the official implementation of the Aligning Latent and Image Spaces to Connect the Unconnectable paper. It is a GAN model whi

Ivan Skorokhodov 203 Jan 03, 2023
Manipulation OpenAI Gym environments to simulate robots at the STARS lab

Manipulator Learning This repository contains a set of manipulation environments that are compatible with OpenAI Gym and simulated in pybullet. In par

STARS Laboratory 5 Dec 08, 2022
🔪 Elimination based Lightweight Neural Net with Pretrained Weights

ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient

snoop2head 4 Jul 12, 2022
Analysis of Antarctica sequencing samples contaminated with SARS-CoV-2

Analysis of SARS-CoV-2 reads in sequencing of 2018-2019 Antarctica samples in PRJNA692319 The samples analyzed here are described in this preprint, wh

Jesse Bloom 4 Feb 09, 2022
Largest list of models for Core ML (for iOS 11+)

Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v

Kedan Li 5.6k Jan 08, 2023
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
MCMC samplers for Bayesian estimation in Python, including Metropolis-Hastings, NUTS, and Slice

Sampyl May 29, 2018: version 0.3 Sampyl is a package for sampling from probability distributions using MCMC methods. Similar to PyMC3 using theano to

Mat Leonard 304 Dec 25, 2022
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp This is the source code of our 3rd place solution to matching track of Image Sim

16 Dec 25, 2022
Moment-DETR code and QVHighlights dataset

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Jussi Doherty 1 Jan 03, 2022
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0

32 Nov 27, 2022
🛠️ Tools for Transformers compression using Lightning ⚡

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

Jules Belveze 66 Dec 11, 2022