Lucid Sonic Dreams syncs GAN-generated visuals to music.

Overview

Lucid Sonic Dreams

Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses NVLabs StyleGAN2, with pre-trained models lifted from Justin Pinkney's consolidated repository. Custom weights and other GAN architectures can be used as well.

Sample output can be found on YouTube and Instagram.

Installation

This implementation has been teston on Python 3.6 and 3.7. As per NVLabs' TensorFlow implementation of StyleGAN2, TensorFlow 1.15 is required. TensorFlow 2.x is not supported.

To install, simply run:

pip install lucidsonicdreams

Usage

You may refer to the Lucid Sonic Dreams Tutorial Notebook for full parameter descriptions and sample code templates. A basic visualization snippet is also found below.

Basic Visualization

from lucidsonicdreams import LucidSonicDream


L = LucidSonicDream(song = 'song.mp3',
                    style = 'abstract photos')

L.hallucinate(file_name = 'song.mp4') 
Comments
  • where to place .pkl model files?

    where to place .pkl model files?

    Hi,

    Thanks for the fantastic repo,

    I really want to drop a custom .pkl model file into LucidSonicDreams and it isn't obvious to me where I should put it? I'm working in Colab for the time being.

    Thanks,

    Mark

    opened by markhanslip 1
  • Installing in Ubuntu 20.04 ?

    Installing in Ubuntu 20.04 ?

    Hi I tried now for hours to install Lucid Sonic Dreams in Ubuntu 20.04. How to install it correctly so that it works ? I tried it with anaconda but no luck....a little desperate now ! Update: Installed everything without errors. Used the setup.py to install dependencies. But now i am stuck. Where and how to execute this:

    from lucidsonicdreams import show_styles

    Show valid default style names. show_styles()

    or this ?

    "from lucidsonicdreams import LucidSonicDream

    L = LucidSonicDream(song = 'song.mp3', style = 'abstract photos')

    L.hallucinate(file_name = 'song.mp4') " ??

    Can someone enlighten me please ?

    opened by Colliwomple 0
  • Fix for broken Deps possibly?  Please advise!  LSD colab is BROKEN!  Thanks!

    Fix for broken Deps possibly? Please advise! LSD colab is BROKEN! Thanks!

    See - https://github.com/mikaelalafriz/lucid-sonic-dreams/compare/main...pollinations:lucid-sonic-dreams:main suggestion for pollinations to mod to self refer so their fixes they made can be used, otherwise its referring to the same broken changes that you have that are breaking the colabs for LSD.

    [fuse bias errors mostly to do with incompatibilities in breaking changes to several depenancies and potential v2 v3 python issues with v1/v2 tensorflow.]

    ITs fixable but we need to specify the old working dependencies from what i can see, not the new breaking ones. All this began after the default code attempted to integrate ADA from what i could see? Correct me if i am wrong thanks!

    opened by cleancoindev 1
  • Real time support

    Real time support

    Hi,

    First, thank you for your great work - it's incredible!

    I was wondering if, in your opinion, it would be possible to extend your work to generate the visuals in real-time. This would mean using streaming of audio data (or, possibly, MIDI) rather than pre-rendered files. I guess the frame rate can be a little low at 1024, but it would be still great to have this option for someone who has a lot of GPUs. Do you think it would be anyhow realistic?

    Keep up the amazing work!

    opened by lowlypalace 0
  • ModuleNotFoundError: No module named 'lucidsonicdreams'

    ModuleNotFoundError: No module named 'lucidsonicdreams'

    Im trying to run a test and this is the way i have the python file typed. Any help would be appreciated

    (command i input)= python proud.py (to run the python below)

    from lucidsonicdreams import LucidSonicDream

    L = LucidSonicDream(song = 'proud.mp3', style = 'abstract photos')

    L.hallucinate(file_name = 'proud.mp4', resolution = 360, start = 30, duration = 45)

    files.download("proud of you.mp4")

    Error im getting

    Traceback (most recent call last): File "proud.py" line 1 in from lucidsonicdreams import LucidSonicDream ModuleNotFoundError: No module named 'lucidsonicdreams

    Screenshot (4) '

    opened by Texagon 3
  • index out of bounds

    index out of bounds

    Hi! I am trying out the script in order to sync some images I have generated using VQGAN+CLIP to my audio. Here's the code:

    def load_imgs(noise_batch, class_batch):
        # just loads N images randomly
        return images
    
    L = LucidSonicDream('audio_5.mp3',
                        style = load_imgs, 
                        input_shape = 592,
                        num_possible_classes = 1000)
    
    L.hallucinate('video_sync.mp4',
                  output_audio = 'audio_sync.mp3',
                  speed_fpm = 3,
                  classes = [13, 14, 22, 24, 301, 84, 99, 100, 134, 143, 393, 394],
                  class_shuffle_seconds = 10, 
                  class_shuffle_strength = 0.1,
                  class_complexity = 0.5,
                  class_smooth_seconds = 4,
                  motion_react = 0.35,
                  flash_strength = 1)
                  #contrast_strength = 0.5)
    

    The error appears just at the end of the process:

    IndexError                                Traceback (most recent call last)
    <ipython-input-15-aeedb41e1387> in <module>()
         15               class_smooth_seconds = 4,
         16               motion_react = 0.35,
    ---> 17               flash_strength = 1)
         18               #contrast_strength = 0.5)
    
    2 frames
    /usr/local/lib/python3.7/dist-packages/lucidsonicdreams/main.py in apply_effect(self, array, index)
        742     '''Apply effect to image (array)'''
        743 
    --> 744     amplitude = self.spec[index]
        745     return self.func(array=array, strength = self.strength, amplitude=amplitude)
    
    IndexError: index 207 is out of bounds for axis 0 with size 207
    

    Any idea on how to avoid it? Thanks in advance!

    opened by shoegazerstella 0
Releases(v_04)
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
Machine learning for NeuroImaging in Python

nilearn Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive doc

919 Dec 25, 2022
Neural Architecture Search Powered by Swarm Intelligence 🐜

Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle

288 Oct 28, 2022
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 1.9.0 ubuntu20/python3.9/pip ubuntu20/python3.8/p

ESPnet 5.9k Jan 04, 2023
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
Optical Character Recognition + Instance Segmentation for russian and english languages

Распознавание рукописного текста в школьных тетрадях Соревнование, проводимое в рамках олимпиады НТО, разработанное Сбером. Платформа ODS. Результаты

Gerasimov Maxim 21 Dec 19, 2022
Official implementation of our paper "Learning to Bootstrap for Combating Label Noise"

Learning to Bootstrap for Combating Label Noise This repo is the official implementation of our paper "Learning to Bootstrap for Combating Label Noise

21 Apr 09, 2022
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
Official PyTorch implementation of the ICRA 2021 paper: Adversarial Differentiable Data Augmentation for Autonomous Systems.

Adversarial Differentiable Data Augmentation This repository provides the official PyTorch implementation of the ICRA 2021 paper: Adversarial Differen

Manli 3 Oct 15, 2022
[arXiv22] Disentangled Representation Learning for Text-Video Retrieval

Disentangled Representation Learning for Text-Video Retrieval This is a PyTorch implementation of the paper Disentangled Representation Learning for T

Qiang Wang 49 Dec 18, 2022
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''.

Sparse VAE This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''. Data Sources The datasets used in this paper wer

Gemma Moran 17 Dec 12, 2022
Data reduction pipeline for KOALA on the AAT.

KOALA KOALA, the Kilofibre Optical AAT Lenslet Array, is a wide-field, high efficiency, integral field unit used by the AAOmega spectrograph on the 3.

4 Sep 26, 2022
This repository holds code and data for our PETS'22 article 'From "Onion Not Found" to Guard Discovery'.

From "Onion Not Found" to Guard Discovery (PETS'22) This repository holds the code and data for our PETS'22 paper titled 'From "Onion Not Found" to Gu

Lennart Oldenburg 3 May 04, 2022
Embeddinghub is a database built for machine learning embeddings.

Embeddinghub is a database built for machine learning embeddings.

Featureform 1.2k Jan 01, 2023