Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Overview

Vision-Language Transformer and Query Generation for Referring Segmentation

Please consider citing our paper in your publications if the project helps your research.

@inproceedings{vision-language-transformer,
  title={Vision-Language Transformer and Query Generation for Referring Segmentation},
  author={Ding, Henghui and Liu, Chang and Wang, Suchen and Jiang, Xudong},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  year={2021}
}

Installation

  1. Environment:

    • Python 3.6

    • tensorflow 1.15

    • Other dependencies in requirements.txt

    • SpaCy model for embedding:

      python -m spacy download en_vectors_web_lg

  2. Dataset preparation

    • Put the folder of COCO training set ("train2014") under data/images/.

    • Download the RefCOCO dataset from here and extract them to data/. Then run the script for data preparation under data/:

      cd data
      python data_process_v2.py --data_root . --output_dir data_v2 --dataset [refcoco/refcoco+/refcocog] --split [unc/umd/google] --generate_mask
      

Evaluating

  1. Download pretrained models & config files from here.

  2. In the config file, set:

    • evaluate_model: path to the pretrained weights
    • evaluate_set: path to the dataset for evaluation.
  3. Run

    python vlt.py test [PATH_TO_CONFIG_FILE]
    

Training

  1. Pretrained Backbones: We use the backbone weights proviede by MCN.

    Note: we use the backbone that excludes all images that appears in the val/test splits of RefCOCO, RefCOCO+ and RefCOCOg.

  2. Specify hyperparameters, dataset path and pretrained weight path in the configuration file. Please refer to the examples under /config, or config file of our pretrained models.

  3. Run

    python vlt.py train [PATH_TO_CONFIG_FILE]
    

Acknowledgement

We borrowed a lot of codes from MCN, keras-transformer, RefCOCO API and keras-yolo3. Thanks for their excellent works!

Owner
Henghui Ding
Henghui Ding
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
✂️ EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video.

EyeLipCropper EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video. The whole process consists of three parts: frame extracti

Zi-Han Liu 9 Oct 25, 2022
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

VITA 59 Dec 28, 2022
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet) (

Wei-Ting Chen 49 Dec 27, 2022
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
Implementation of "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing".

DeepOrder Implementation of DeepOrder for the paper "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing". Project

6 Nov 07, 2022
SIR model parameter estimation using a novel algorithm for differentiated uniformization.

TenSIR Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate m

The Spang Lab 4 Nov 30, 2022
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
Recurrent Conditional Query Learning

Recurrent Conditional Query Learning (RCQL) This repository contains the Pytorch implementation of One Model Packs Thousands of Items with Recurrent C

Dongda 4 Nov 28, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar: Parallel Training of Large Language Models via a Chunk-based Memory Management Meeting PatrickStar Pre-Trained Models (PTM) are becoming

Tencent 633 Dec 28, 2022
This repository will be a summary and outlook on all our open, medical, AI advancements.

medical by LAION This repository will be a summary and outlook on all our open, medical, AI advancements. See the medical-general channel in the medic

LAION AI 18 Dec 30, 2022
Hands-On Machine Learning for Algorithmic Trading, published by Packt

Hands-On Machine Learning for Algorithmic Trading Hands-On Machine Learning for Algorithmic Trading, published by Packt This is the code repository fo

Packt 981 Dec 29, 2022
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022
Code for Neurips2021 Paper "Topology-Imbalance Learning for Semi-Supervised Node Classification".

Topology-Imbalance Learning for Semi-Supervised Node Classification Introduction Code for NeurIPS 2021 paper "Topology-Imbalance Learning for Semi-Sup

Victor Chen 40 Nov 23, 2022
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022