Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

Overview

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas J. Guibas (* equal contribution)
SIGGRAPH Asia 2020
Project | arxiv

teaser

Citation

@article{Sung:2020,
  author = {Sung, Minhyuk and Jiang, Zhenyu and Achlioptas, Panos and Mitra, Niloy J. and Guibas, Leonidas J.},
  title = {DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces},
  Journal = {ACM Transactions on Graphics (Proc. of SIGGRAPH Asia)}, 
  year = {2020}
}

Introduction

Shape deformation is an important component in any geometry processing toolbox. The goal is to enable intuitive deformations of single or multiple shapes or to transfer example deformations to new shapes while preserving the plausibility of the deformed shape(s). Existing approaches assume access to point-level or part-level correspondence or establish them in a preprocessing phase, thus limiting the scope and generality of such approaches. We propose DeformSyncNet, a new approach that allows consistent and synchronized shape deformations without requiring explicit correspondence information. Technically, we achieve this by encoding deformations into a class-specific idealized latent space while decoding them into an individual, model-specific linear deformation action space, operating directly in 3D. The underlying encoding and decoding are performed by specialized (jointly trained) neural networks. By design, the inductive bias of our networks results in a deformation space with several desirable properties, such as path invariance across different deformation pathways, which are then also approximately preserved in real space. We qualitatively and quantitatively evaluate our framework against multiple alternative approaches and demonstrate improved performance.

Dependencies

Dataset Preparation

Download data

ShapeNet

Full raw data(train, val and test) can be downloaded here(you can use wget --no-check-certificate {url} to download in commandline). Please download and unzip the ShapeNetFullData.zip file.

Prepared test data can be downloaded here(you can use wget --no-check-certificate {url} to download in commandline). Please download and unzip the ShapeNetTestData.zip file.

ComplementMe

Full raw data(train, val and test) can be downloaded here(you can use wget --no-check-certificate {url} to download in commandline). Please download and unzip the ComplementMeFullData.zip file

Prepared test data can be downloaded here(you can use wget --no-check-certificate {url} to download in commandline). Please download and unzip the ComplementMeTestData.zip file.

Training

To train a model:

cd code
python train.py -opt option/train/train_DSN_(ShapeNet|ComplementMe)_{category}.yaml
  • The json file will be processed by option/parse.py. Please refer to this for more details.
  • Before running this code, please modify option files to your own configurations including:
    • proper root path for the data loader
    • saving frequency for models and states
    • other hyperparameters
    • loss function, etc.
  • During training, you can use Tesorboard to monitor the losses with tensorboard --logdir tb_logger/NAME_OF_YOUR_EXPERIMENT

Testing

To test trained model with metrics in Table 1(Fitting CD, MIOU, MMD-CD, Cov-CD) and Table2(Parallelogram consistency CD) (on ShapeNet) in the paper:

cd code
python test.py -opt path/to/train_option -test_data_root path/to/test_data -data_root path/to/full/data -out_dir path/to/save_dir -load_path path/to/model

To test trained model with metrics in Table 3(Fitting CD, MMD-CD, Cov-CD) (on ComplementMe) in the paper:

cd code
python test_ComplementMe.py -opt path/to/train_option -test_data_root path/to/test_data -out_dir path/to/save_dir -load_path path/to/model

It will load model weight from path/to/model. The default loading directory is experiment/{exp_name}/model/best_model.pth, which means when you test model after training, you can omit the -load_path. Generated shapes will be save in path/to/save_dir. The default save directory is result/ShapeNet/{category}.

Pretrained Models

ShapeNet

Airplane, Car, Chair, Lamp, Table

ComplementMe

Airplane, Car, Chair, Sofa, Table

Owner
Zhenyu Jiang
First-year Ph.D. at UTCS
Zhenyu Jiang
Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

Wenxuan Zhou 146 Nov 29, 2022
⚡ H2G-Net for Semantic Segmentation of Histopathological Images

H2G-Net This repository contains the code relevant for the proposed design H2G-Net, which was introduced in the manuscript "Hybrid guiding: A multi-re

André Pedersen 8 Nov 24, 2022
Code for CVPR2021 "Visualizing Adapted Knowledge in Domain Transfer". Visualization for domain adaptation. #explainable-ai

Visualizing Adapted Knowledge in Domain Transfer @inproceedings{hou2021visualizing, title={Visualizing Adapted Knowledge in Domain Transfer}, auth

Yunzhong Hou 80 Dec 25, 2022
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
Implementation of the federated dual coordinate descent (FedDCD) method.

FedDCD.jl Implementation of the federated dual coordinate descent (FedDCD) method. Installation To install, just call Pkg.add("https://github.com/Zhen

Zhenan Fan 6 Sep 21, 2022
Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning

advantage-weighted-regression Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning, by Peng et al. (

Omar D. Domingues 1 Dec 02, 2021
Reinforcement Learning for Automated Trading

Reinforcement Learning for Automated Trading This thesis has been realized for the obtention of the Master's in Mathematical Engineering at the Polite

Pierpaolo Necchi 80 Jun 19, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* This code is based on MMdetecti

sunshine.lwt 112 Jan 05, 2023
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 18, 2021
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
Unofficial JAX implementations of Deep Learning models

JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX

107 Jan 05, 2023
SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks

SalFBNet This repository includes Pytorch implementation for the following paper: SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolu

12 Aug 12, 2022
Anomaly Localization in Model Gradients Under Backdoor Attacks Against Federated Learning

Federated_Learning This repo provides a federated learning framework that allows to carry out backdoor attacks under varying conditions. This is a ker

Arçelik ARGE Açık Kaynak Yazılım Organizasyonu 0 Nov 30, 2021
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022