Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

Overview

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas J. Guibas (* equal contribution)
SIGGRAPH Asia 2020
Project | arxiv

teaser

Citation

@article{Sung:2020,
  author = {Sung, Minhyuk and Jiang, Zhenyu and Achlioptas, Panos and Mitra, Niloy J. and Guibas, Leonidas J.},
  title = {DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces},
  Journal = {ACM Transactions on Graphics (Proc. of SIGGRAPH Asia)}, 
  year = {2020}
}

Introduction

Shape deformation is an important component in any geometry processing toolbox. The goal is to enable intuitive deformations of single or multiple shapes or to transfer example deformations to new shapes while preserving the plausibility of the deformed shape(s). Existing approaches assume access to point-level or part-level correspondence or establish them in a preprocessing phase, thus limiting the scope and generality of such approaches. We propose DeformSyncNet, a new approach that allows consistent and synchronized shape deformations without requiring explicit correspondence information. Technically, we achieve this by encoding deformations into a class-specific idealized latent space while decoding them into an individual, model-specific linear deformation action space, operating directly in 3D. The underlying encoding and decoding are performed by specialized (jointly trained) neural networks. By design, the inductive bias of our networks results in a deformation space with several desirable properties, such as path invariance across different deformation pathways, which are then also approximately preserved in real space. We qualitatively and quantitatively evaluate our framework against multiple alternative approaches and demonstrate improved performance.

Dependencies

Dataset Preparation

Download data

ShapeNet

Full raw data(train, val and test) can be downloaded here(you can use wget --no-check-certificate {url} to download in commandline). Please download and unzip the ShapeNetFullData.zip file.

Prepared test data can be downloaded here(you can use wget --no-check-certificate {url} to download in commandline). Please download and unzip the ShapeNetTestData.zip file.

ComplementMe

Full raw data(train, val and test) can be downloaded here(you can use wget --no-check-certificate {url} to download in commandline). Please download and unzip the ComplementMeFullData.zip file

Prepared test data can be downloaded here(you can use wget --no-check-certificate {url} to download in commandline). Please download and unzip the ComplementMeTestData.zip file.

Training

To train a model:

cd code
python train.py -opt option/train/train_DSN_(ShapeNet|ComplementMe)_{category}.yaml
  • The json file will be processed by option/parse.py. Please refer to this for more details.
  • Before running this code, please modify option files to your own configurations including:
    • proper root path for the data loader
    • saving frequency for models and states
    • other hyperparameters
    • loss function, etc.
  • During training, you can use Tesorboard to monitor the losses with tensorboard --logdir tb_logger/NAME_OF_YOUR_EXPERIMENT

Testing

To test trained model with metrics in Table 1(Fitting CD, MIOU, MMD-CD, Cov-CD) and Table2(Parallelogram consistency CD) (on ShapeNet) in the paper:

cd code
python test.py -opt path/to/train_option -test_data_root path/to/test_data -data_root path/to/full/data -out_dir path/to/save_dir -load_path path/to/model

To test trained model with metrics in Table 3(Fitting CD, MMD-CD, Cov-CD) (on ComplementMe) in the paper:

cd code
python test_ComplementMe.py -opt path/to/train_option -test_data_root path/to/test_data -out_dir path/to/save_dir -load_path path/to/model

It will load model weight from path/to/model. The default loading directory is experiment/{exp_name}/model/best_model.pth, which means when you test model after training, you can omit the -load_path. Generated shapes will be save in path/to/save_dir. The default save directory is result/ShapeNet/{category}.

Pretrained Models

ShapeNet

Airplane, Car, Chair, Lamp, Table

ComplementMe

Airplane, Car, Chair, Sofa, Table

Owner
Zhenyu Jiang
First-year Ph.D. at UTCS
Zhenyu Jiang
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-

John 9 Sep 18, 2022
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens

Lutz Roeder 21k Jan 06, 2023
Official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). VaxNeRF provides very fast training and slightl

naruya 132 Nov 21, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

Adelaide Intelligent Machines (AIM) Group 3k Jan 02, 2023
Authors implementation of LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant self-at

35 Oct 18, 2022
A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries.

Yolo-Powered-Detector A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries

Luke Wilson 1 Dec 03, 2021
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

77 Dec 16, 2022
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods Datasets Because of copyright issues, both the MalwareBazaar dataset

8 Oct 21, 2022
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
Scenarios, tutorials and demos for Autonomous Driving

The Autonomous Driving Cookbook (Preview) NOTE: This project is developed and being maintained by Project Road Runner at Microsoft Garage. This is cur

Microsoft 2.1k Jan 02, 2023
Data Consistency for Magnetic Resonance Imaging

Data Consistency for Magnetic Resonance Imaging Data Consistency (DC) is crucial for generalization in multi-modal MRI data and robustness in detectin

Dimitris Karkalousos 19 Dec 12, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
The authors' official PyTorch SigWGAN implementation

The authors' official PyTorch SigWGAN implementation This repository is the official implementation of [Sig-Wasserstein GANs for Time Series Generatio

9 Jun 16, 2022
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
Code for Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021)

Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021) authors: Boris Knyazev, Michal Drozdzal, Graham Taylor, Adriana Romero-Soriano Overv

Facebook Research 462 Jan 03, 2023