Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

Overview

HifiFace — Unofficial Pytorch Implementation

Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

issueBadge starBadge repoSize lastCommit

This repository is an unofficial implementation of the face swapping model proposed by Wang et. al in their paper HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping. This implementation makes use of the Pytorch Lighting library, a light-weight wrapper for PyTorch.

HifiFace Overview

The task of face swapping applies the face and the identity of the source person to the head of the target.

The HifiFace architecture can be broken up into three primary structures. The 3D shape-aware identity extractor, the semantic facial fusion module, and an encoder-decoder structure. A high-level overview of the architecture can be seen in the image below.

Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 2, pg. 3)

Changes from the original paper

Dataset

In the paper, the author used VGGFace2 and Asian-Celeb as the training dataset. Unfortunately, the Asian-Celeb dataset can only be accessed with a Baidu account, which we do not have. Thus, we only use VGGFace2 for our training dateset.

Model

The paper proposes two versions of HifiFace model based on the output image size: 256x256 and 512x512 (referred to as Ours-256 and Ours-512 in the paper). The 512x512 model uses an extra data preprocessing before training. In this open source project, we implement the 256x256 model. For the discriminator, the original paperuses the discriminator from StarGAN v2. Our implementation uses the multi-scale discriminator from SPADE.

Installation

Build Docker Image

git clone https://github.com/mindslab-ai/hififace 
cd hififace
git clone https://github.com/sicxu/Deep3DFaceRecon_pytorch && git clone https://github.com/NVlabs/nvdiffrast && git clone https://github.com/deepinsight/insightface.git
cp -r insightface/recognition/arcface_torch/ Deep3DFaceRecon_pytorch/models/
cp -r insightface/recognition/arcface_torch/ ./model/
rm -rf insightface
cp -rf 3DMM/* Deep3DFaceRecon_pytorch
mv Deep3DFaceRecon_pytorch model/
rm -rf 3DMM
docker build -t hififace:latent .
rm -rf nvdiffrast

This Dockerfile was inspired by @yuzhou164, this issue from Deep3DFaceRecon_pytorch.

Pre-Trained Model for Deep3DFace PyTorch

Follow the guideline in Prepare prerequisite models

Set up at ./mode/Deep3DFaceRecon_pytorch/

Pre-Trained Models for ArcFace

We used official Arcface per-trained pytorch implementation Download pre-trained checkpoint from onedrive (IResNet-100 trained on MS1MV3)

Download HifiFace Pre-Trained Model

google drive link trained on VGGFace2, 300K iterations

Training

Dataset & Preprocessing

Align & Crop

We aligned the face images with the landmark extracted by 3DDFA_V2. The code will be added.

Face Segmentation Map

After finishing aligning the face images, you need to get the face segmentation map for each face images. We used face segmentation model that PSFRGAN provides. You can use their code and pre-trained model.

Dataset Folder Structure

Each face image and the corresponding segmentation map should have the same name and the same relative path from the top-level directory.

face_image_dataset_folder
└───identity1
│   │   image1.png
│   │   image2.png
│   │   ...
│   
└───identity2
│   │   image1.png
│   │   image2.png
│   │   ...
│ 
|   ...

face_segmentation_mask_folder
└───identity1
│   │   image1.png
│   │   image2.png
│   │   ...
│   
└───identity2
│   │   image1.png
│   │   image2.png
│   │   ...
│ 
|   ...

Wandb

Wandb is a powerful tool to manage your model training. Please make a wandb account and a wandb project for training HifiFace with our training code.

Changing the Configuration

  • config/model.yaml

    • dataset.train.params.image_root: directory path to the training dataset images
    • dataset.train.params.parsing_root: directory path to the training dataset parsing images
    • dataset.validation.params.image_root: directory path to the validation dataset images
    • dataset.validation.params.parsing_root: directory path to the validation dataset parsing images
  • config/trainer.yaml

    • checkpoint.save_dir: directory where the checkpoints will be saved
    • wandb: fill out your wandb entity and project name

Run Docker Container

docker run -it --ipc host --gpus all -v /PATH_TO/hififace:/workspace -v /PATH_TO/DATASET/FOLDER:/DATA --name hififace hififace:latent

Run Training Code

python hififace_trainer.py --model_config config/model.yaml --train_config config/trainer.yaml -n hififace

Inference

Single Image

python hififace_inference --gpus 0 --model_config config/model.yaml --model_checkpoint_path hififace_opensouce_299999.ckpt --source_image_path asset/inference_sample/01_source.png --target_image_path asset/inference_sample/01_target.png --output_image_path ./01_result.png

All Posible Pairs of Images in Directory

python hififace_inference --gpus 0 --model_config config/model.yaml --model_checkpoint_path hififace_opensouce_299999.ckpt  --input_directory_path asset/inference_sample --output_image_path ./result.png

Interpolation

# interpolates both the identity and the 3D shape.
python hififace_inference --gpus 0 --model_config config/model.yaml --model_checkpoint_path hififace_opensouce_299999.ckpt --source_image_path asset/inference_sample/01_source.png --target_image_path asset/inference_sample/01_target.png --output_image_path ./01_result_all.gif  --interpolation_all 

# interpolates only the identity.
python hififace_inference --gpus 0 --model_config config/model.yaml --model_checkpoint_path hififace_opensouce_299999.ckpt --source_image_path asset/inference_sample/01_source.png --target_image_path asset/inference_sample/01_target.png --output_image_path ./01_result_identity.gif  --interpolation_identity

# interpolates only the 3D shape.
python hififace_inference --gpus 0 --model_config config/model.yaml --model_checkpoint_path hififace_opensouce_299999.ckpt --source_image_path asset/inference_sample/01_source.png --target_image_path asset/inference_sample/01_target.png --output_image_path ./01_result_3d.gif  --interpolation_3d

Our Results

The results from our pre-trained model.

GIF interpolaiton results from Obama to Trump to Biden back to Obama. The left image interpolates both the identity and the 3D shape. The middle image interpolates only the identity. The right image interpolates only the 3D shape.

To-Do List

  • Pre-processing Code
  • Colab Notebook

License

BSD 3-Clause License.

Implementation Author

Changho Choi @ MINDs Lab, Inc. ([email protected])

Matthew B. Webster @ MINDs Lab, Inc. ([email protected])

Citations

@article{DBLP:journals/corr/abs-2106-09965,
  author    = {Yuhan Wang and
               Xu Chen and
               Junwei Zhu and
               Wenqing Chu and
               Ying Tai and
               Chengjie Wang and
               Jilin Li and
               Yongjian Wu and
               Feiyue Huang and
               Rongrong Ji},
  title     = {HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping},
  journal   = {CoRR},
  volume    = {abs/2106.09965},
  year      = {2021}
}
Owner
MINDs Lab
MINDsLab provides AI platform and various AI engines based on deep machine learning.
MINDs Lab
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
How to Predict Stock Prices Easily Demo

How-to-Predict-Stock-Prices-Easily-Demo How to Predict Stock Prices Easily - Intro to Deep Learning #7 by Siraj Raval on Youtube ##Overview This is th

Siraj Raval 752 Nov 16, 2022
RefineGNN - Iterative refinement graph neural network for antibody sequence-structure co-design (RefineGNN)

Iterative refinement graph neural network for antibody sequence-structure co-des

Wengong Jin 83 Dec 31, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.

Use this instead: https://github.com/facebookresearch/maskrcnn-benchmark A Pytorch Implementation of Detectron Example output of e2e_mask_rcnn-R-101-F

Roy 2.8k Dec 29, 2022
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022
NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring Uncensored version of the following image can be found at https://i.

notAI.tech 1.1k Dec 29, 2022
Interactive dimensionality reduction for large datasets

BlosSOM 🌼 BlosSOM is a graphical environment for running semi-supervised dimensionality reduction with EmbedSOM. You can use it to explore multidimen

19 Dec 14, 2022
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
Tightness-aware Evaluation Protocol for Scene Text Detection

TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval

Yuliang Liu 206 Nov 18, 2022
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
Cours d'Algorithmique Appliquée avec Python pour BTS SIO SISR

Course: Introduction to Applied Algorithms with Python (in French) This is the source code of the website for the Applied Algorithms with Python cours

Loic Yvonnet 0 Jan 27, 2022
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022
Saeed Lotfi 28 Dec 12, 2022
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg

Denis Yarats 52 Jan 01, 2023
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022