Data Preparation, Processing, and Visualization for MoVi Data

Overview

MoVi-Toolbox

Data Preparation, Processing, and Visualization for MoVi Data, https://www.biomotionlab.ca/movi/

MoVi is a large multipurpose dataset of human motion and video.

Here we provide tools and tutorials to use MoVi in your research projects. More specifically:

Table of Contents

Installation

Requirements

  • Python 3.*
  • MATLAB v>2017

In case you are interested in using body shape data (or also AMASS/MoVi original data) follow the instructions on AMASS Github page.

Tutorials

  • We have provided very brief tutorials on how to use the dataset in MoCap. Some of the functions are only provided in MATLAB or Python so please take a look at both tutorial files tutorial_MATLAB.m and tutorial_python.ipynb.

  • The tutorial on how to have access to the dataset is given here.

Important Notes

  • The video data for each round are provided as a single sequence (and not individual motions). In case you are interested in having synchronized video and AMASS (joint and body) data, you should trim F_PGx_Subject_x_L.avi files into single motion video files using single_videos.m function.
  • The timestamps (which separate motions) are provided by the name of “flags” in V3D files (only for f and s rounds). Please notice that “flags30” can be used for video data and “flags120” can be used for mocap data. The reason for having two types of flags is that video data were recorded in 30 fps and mocap data were recorded in 120 fps.
  • The body mesh is not provided in AMASS files by default. Please use amass_fk function to augment AMASS data with the corresponding body mesh (vertices). (the details are explained in the tutorial_python.ipynb)

Citation

Please cite the following paper if you use this code directly or indirectly in your research/projects:

@misc{ghorbani2020movi,
    title={MoVi: A Large Multipurpose Motion and Video Dataset},
    author={Saeed Ghorbani and Kimia Mahdaviani and Anne Thaler and Konrad Kording and Douglas James Cook and Gunnar Blohm and Nikolaus F. Troje},
    year={2020},
    eprint={2003.01888},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

License

Software Copyright License for non-commercial scientific research purposes. Before you download and/or use the Motion and Video (MoVi) dataset, please carefully read the terms and conditions stated on our website and in any accompanying documentation. If you are using the part of the dataset that was post-processed as part of AMASS, you must follow all their terms and conditions as well. By downloading and/or using the data or the code (including downloading, cloning, installing, and any other use of this GitHub repository), you acknowledge that you have read these terms and conditions, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not download and/or use the MoVi dataset and any associated code and software. Any infringement of the terms of this agreement will automatically terminate your rights under this License.

Contact

The code in this repository is developed by Saeed Ghorbani.

If you have any questions you can contact us at [email protected].

Owner
Saeed Ghorbani
Graduate student in EECS department at York University
Saeed Ghorbani
CaLiGraph Ontology as a Challenge for Semantic Reasoners ([email protected]'21)

CaLiGraph for Semantic Reasoning Evaluation Challenge This repository contains code and data to use CaLiGraph as a benchmark dataset in the Semantic R

Nico Heist 0 Jun 08, 2022
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022
Final report with code for KAIST Course KSE 801.

Orthogonal collocation is a method for the numerical solution of partial differential equations

Chuanbo HUA 4 Apr 06, 2022
Python implementation of Bayesian optimization over permutation spaces.

Bayesian Optimization over Permutation Spaces This repository contains the source code and the resources related to the paper "Bayesian Optimization o

Aryan Deshwal 9 Dec 23, 2022
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images

Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K

Aitor Ruano 87 Dec 16, 2022
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability.

Delayed-cellular-neural-network This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability. There is als

4 Apr 28, 2022
Code for the paper Task Agnostic Morphology Evolution.

Task-Agnostic Morphology Optimization This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Ab

Joey Hejna 18 Aug 04, 2022
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

Katsuya Hyodo 6 May 15, 2022
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Hanchao Leng 82 Dec 29, 2022
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022
Convert openmmlab (not only mmdetection) series model to tensorrt

MMDet to TensorRT This project aims to convert the mmdetection model to TensorRT model end2end. Focus on object detection for now. Mask support is exp

JinTian 4 Dec 17, 2021
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Figure: Shape-Accurate 3D-Aware Image Synthesis. A Shading-Guid

Xingang Pan 115 Dec 18, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure

Chen Kai 24 Dec 05, 2022
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022