CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

Related tags

Deep LearningCFC-Net
Overview

CFC-Net

This project hosts the official implementation for the paper:

CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images [arxiv]

(paper and the complete code are coming soon....)

Abstract

In this paper, we discuss the role of discriminative features in object detection, and then propose a Critical Feature Capturing Network (CFC-Net) to improve detection accuracy from three aspects: building powerful feature representation, refining preset anchors, and optimizing label assignment. The proposed framework creates more powerful semantic representations for objects in remote sensing images and achieves high-performance real-time object detection. Note that our model is a one-stage detector with only one anchor on each location in feature maps, which is equivalent to the anchor-free methods, thus the inference speed is faster.

Requirements

  • torch >= 1.1
  • CUDA version >=10.0

Installation

pip install -r requirements.txt
pip install git+git://github.com/lehduong/torch-warmup-lr.git

cd $ROOT/utils
sh make.sh

cd $ROOT/datasets/DOTA_devkit
sudo apt-get install swig
swig -c++ -python polyiou.i
python setup.py build_ext --inplace

Training

  1. Move the dataset to the $ROOT directory.
  2. Generate imageset files for dataset division via:
cd $ROOT/datasets
python generate_imageset.py
  1. Modify the configuration file hyp.py and arguments in train.py, then start training:
python train.py

Inference

You can use the following command to test a dataset. Note that weight, img_dir, dataset,hyp should be modified as appropriate.

python demo.py

Evaluation

Different datasets use different test methods. For UCAS-AOD/HRSC2016/VOC/NWPU VHR-10, you need to prepare labels in the appropriate format in advance. Take evaluation on HRSC2016 for example:

cd $ROOT/datasets/evaluate
python hrsc2gt.py

then you can conduct evaluation:

python eval.py

Note that :

  • the script needs to be executed only once, but testing on different datasets needs to be executed again.
  • the imageset file used in hrsc2gt.py is generated from generate_imageset.py.

Main Results

Method Dataset Backbone Input Size mAP
CFC-Net HRSC2016 ResNet-50 416 x 416 86.3
CFC-Net HRSC2016 ResNet-101 800 x 800 89.7
CFC-Net UCAS-AOD ResNet-50 416 x 416 89.5
CFC-Net DOTA ResNet-101 800 x 800 73.5

Detections

  • Results on HRSC2016: the red bounding box and the green denotes preset anchors and detection results, respectively. HRSC_results

  • Results on DOTA:

DOTA_results

Citation

If you find our work or code useful in your research, please consider citing:

@article{ming2021cfc,
  title={CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images},
  author={Ming, Qi and Miao, Lingjuan and Zhou, Zhiqiang and Dong, Yunpeng},
  journal={arXiv preprint arXiv:2101.06849},
  year={2021}
}

If you have any questions, please contact me via issue or email.

Owner
ming71
欢迎学术交流合作[email protected]
ming71
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
NIMA: Neural IMage Assessment

PyTorch NIMA: Neural IMage Assessment PyTorch implementation of Neural IMage Assessment by Hossein Talebi and Peyman Milanfar. You can learn more from

Kyryl Truskovskyi 293 Dec 30, 2022
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Madry Lab 35 Nov 14, 2022
Depth-Aware Video Frame Interpolation (CVPR 2019)

DAIN (Depth-Aware Video Frame Interpolation) Project | Paper Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang IEEE C

Wenbo Bao 7.7k Dec 31, 2022
PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks

Code for the paper "PICK: Processing Key Information Extraction from Documents using Improved Graph Learning-Convolutional Networks" (ICPR 2020)

Wenwen Yu 498 Dec 24, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet) (

Wei-Ting Chen 49 Dec 27, 2022
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022
Si Adek Keras is software VR dangerous object detection.

Si Adek Python Keras Sistem Informasi Deteksi Benda Berbahaya Keras Python. Version 1.0 Developed by Ananda Rauf Maududi. Developed date: 24 November

Ananda Rauf 1 Dec 21, 2021
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.

MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐

568 Jan 04, 2023
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
🛠️ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

SLAMcore 7 Aug 04, 2022
Keras-1D-NN-Classifier

Keras-1D-NN-Classifier This code is based on the reference codes linked below. reference 1, reference 2 This code is for 1-D array data classification

Jae-Hoon Shim 6 May 18, 2021
Offical code for the paper: "Growing 3D Artefacts and Functional Machines with Neural Cellular Automata" https://arxiv.org/abs/2103.08737

Growing 3D Artefacts and Functional Machines with Neural Cellular Automata Video of more results: https://www.youtube.com/watch?v=-EzztzKoPeo Requirem

Robotics Evolution and Art Lab 51 Jan 01, 2023
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022
The Balloon Learning Environment - flying stratospheric balloons with deep reinforcement learning.

Balloon Learning Environment Docs The Balloon Learning Environment (BLE) is a simulator for stratospheric balloons. It is designed as a benchmark envi

Google 87 Dec 25, 2022
Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
No Code AI/ML platform

NoCodeAIML No Code AI/ML platform - Community Edition Video credits: Uday Kiran Typical No Code AI/ML Platform will have features like drag and drop,

Bhagvan Kommadi 5 Jan 28, 2022