HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

Related tags

Deep LearningHSC4D
Overview

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

[Project page | Video]

Getting start

Dataset (Click here to download)

The large indoor and outdoor scenes in our dataset. Left: a climbing gym (1200 m2). Middle: a lab building with an outside courtyard 4000 m2. Right: a loop road scene 4600 m2

Data structure

Dataset root/
├── [Place_holder]/
|  ├── [Place_holder].bvh     # MoCap data from Noitom Axis Studio (PNStudio)
|  ├── [Place_holder]_pos.csv # Every joint's roration, generated from `*_bvh`
|  ├── [Place_holder]_rot.csv # Every joint's translation, generated from `*_bvh`
|  ├── [Place_holder].pcap    # Raw data from the LiDAR
|  └── [Place_holder]_lidar_trajectory.txt  # N×9 format file
├── ...
|
└── scenes/
   ├── [Place_holder].pcd
   ├── [Place_holder]_ground.pcd
   ├── ...
   └── ...
  1. Place_holder can be replaced to campus_raod, climbing_gym, and lab_building.
  2. *_lidar_trajectory.txt is generated by our Mapping method and manually calibrated with corresponding scenes.
  3. *_bvh and *_pcap are raw data from sensors. They will not be used in the following steps.
  4. You can test your SLAM algorithm by using *_pcap captured from Ouster1-64 with 1024×20Hz.

Preparation

  • Download basicModel_neutral_lbs_10_207_0_v1.0.0.pkl and put it in smpl directory.
  • Downloat the dataset and modify dataset_root and data_name in configs/sample.cfg.
dataset_root = /your/path/to/datasets
data_name = campus_road # or lab_building, climbing_gym

Requirement

Our code is tested under:

  • Ubuntu: 18.04
  • Python: 3.8
  • CUDA: 11.0
  • Pytorch: 1.7.0

Installation

conda create -n hsc4d python=3.8
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0 -c pytorch
pip install open3d chumpy scipy configargparse matplotlib pathlib pandas opencv-python torchgeometry tensorboardx
  • Note: For mask conversion compatibility in PyTorch 1.7.0, you need to manually edit the source file in torchgeometry. Follow the guide here
  $ vi /home/dyd/software/anaconda3/envs/hsc4d/lib/python3.8/site-packages/torchgeometry/core/conversions.py

  # mask_c1 = mask_d2 * (1 - mask_d0_d1)
  # mask_c2 = (1 - mask_d2) * mask_d0_nd1
  # mask_c3 = (1 - mask_d2) * (1 - mask_d0_nd1)
  mask_c1 = mask_d2 * ~(mask_d0_d1)
  mask_c2 = ~(mask_d2) * mask_d0_nd1
  mask_c3 = ~(mask_d2) * ~(mask_d0_nd1)
  • Note: When nvcc fatal error occurs.
export TORCH_CUDA_ARCH_LIST="8.0" #nvcc complier error. nvcc fatal: Unsupported gpu architecture 

Preprocess

  • Transfer Mocap data [Optional, data provided]

    pip install bvhtoolbox # https://github.com/OlafHaag/bvh-toolbox
    bvh2csv /your/path/to/campus_road.bvh
    • Output: campus_road_pos.csv, campus_road_rot.csv
  • LiDAR mapping [Optional, data provided]

    • Process pcap file
      cd initialize
      pip install ouster-sdk 
      python ouster_pcap_to_txt.py -P /your/path/to/campus_road.pcap [-S start_frame] [-E end_frame]
    • Run your Mapping/SLAM algorithm.

    • Coordinate alignment (About 5 degree error after this step)

      1. The human stands as an A-pose before capture, and the human's face direction is regarded as scene's $Y$-axis direction.
      2. Rotate the scene cloud to make its $Z$-axis perpendicular to the starting position's ground.
      3. Translate the scene to make its origin to the first SMPL model's origin on the ground.
      4. LiDAR's ego motion $T^W$ and $R^W$ are translated and rotated as the scene does.
    • Output: campus_road_lidar_trajectory.txt, scenes/campus_road.pcd

  • Data preprocessing for optimization.

    python preprocess.py --dataset_root /your/path/to/datasets -fn campus_road -D 0.1

Data fusion

To be added

Data optimization

python main.py --config configs/sample.cfg

Visualization

To be added

Copyright

The HSC4D dataset is published under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.You must attribute the work in the manner specified by the authors, you may not use this work for commercial purposes and if you alter, transform, or build upon this work, you may distribute the resulting work only under the same license. Contact us if you are interested in commercial usage.

Bibtex

@misc{dai2022hsc4d,
    title={HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR},
    author={Yudi Dai and Yitai Lin and Chenglu Wen and Siqi Shen and Lan Xu and Jingyi Yu and Yuexin Ma and Cheng Wang},
    year={2022},
    eprint={2203.09215},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs In this work, we propose a framework HijackGAN, which enables non-linear latent space travers

Hui-Po Wang 46 Sep 05, 2022
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 07, 2023
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis (CVPR2022)

Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis Multi-View Consistent Generative Adversarial Networks for 3D-aware

Xuanmeng Zhang 78 Dec 10, 2022
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022
Process JSON files for neural recording sessions using Medtronic's BrainSense Percept PC neurostimulator

percept_processing This code processes JSON files for streamed neural data using Medtronic's Percept PC neurostimulator with BrainSense Technology for

Maria Olaru 3 Jun 06, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
Code repo for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper.

InterpretableMDE A PyTorch implementation for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper. arXiv link: https://arxiv.or

Zunzhi You 16 Aug 12, 2022
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022
PyTorch implementation of the paper Dynamic Token Normalization Improves Vision Transfromers.

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
A Temporal Extension Library for PyTorch Geometric

Documentation | External Resources | Datasets PyTorch Geometric Temporal is a temporal (dynamic) extension library for PyTorch Geometric. The library

Benedek Rozemberczki 1.9k Jan 07, 2023
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
Framework to build and train RL algorithms

RayLink RayLink is a RL framework used to build and train RL algorithms. RayLink was used to build a RL framework, and tested in a large-scale multi-a

Bytedance Inc. 32 Oct 07, 2022
Repository for XLM-T, a framework for evaluating multilingual language models on Twitter data

This is the XLM-T repository, which includes data, code and pre-trained multilingual language models for Twitter. XLM-T - A Multilingual Language Mode

Cardiff NLP 112 Dec 27, 2022