A fast Evolution Strategy implementation in Python

Overview

Evostra: Evolution Strategy for Python

Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn more about it at https://blog.openai.com/evolution-strategies/

Installation

It's compatible with both python2 and python3.

Install from source:

$ python setup.py install

Install latest version from git repository using pip:

$ pip install git+https://github.com/alirezamika/evostra.git

Install from PyPI:

$ pip install evostra

(You may need to use python3 or pip3 for python3)

Sample Usages

An AI agent learning to play flappy bird using evostra

An AI agent learning to walk using evostra

How to use

The input weights of the EvolutionStrategy module is a list of arrays (one array with any shape for each layer of the neural network), so we can use any framework to build the model and just pass the weights to ES.

For example we can use Keras to build the model and pass its weights to ES, but here we use Evostra's built-in model FeedForwardNetwork which is much faster for our use case:

import numpy as np
from evostra import EvolutionStrategy
from evostra.models import FeedForwardNetwork

# A feed forward neural network with input size of 5, two hidden layers of size 4 and output of size 3
model = FeedForwardNetwork(layer_sizes=[5, 4, 4, 3])

Now we define our get_reward function:

solution = np.array([0.1, -0.4, 0.5])
inp = np.asarray([1, 2, 3, 4, 5])

def get_reward(weights):
    global solution, model, inp
    model.set_weights(weights)
    prediction = model.predict(inp)
    # here our best reward is zero
    reward = -np.sum(np.square(solution - prediction))
    return reward

Now we can build the EvolutionStrategy object and run it for some iterations:

# if your task is computationally expensive, you can use num_threads > 1 to use multiple processes;
# if you set num_threads=-1, it will use number of cores available on the machine; Here we use 1 process as the
#  task is not computationally expensive and using more processes would decrease the performance due to the IPC overhead.
es = EvolutionStrategy(model.get_weights(), get_reward, population_size=20, sigma=0.1, learning_rate=0.03, decay=0.995, num_threads=1)
es.run(1000, print_step=100)

Here's the output:

iter 100. reward: -68.819312
iter 200. reward: -0.218466
iter 300. reward: -0.110204
iter 400. reward: -0.001901
iter 500. reward: -0.000459
iter 600. reward: -0.000287
iter 700. reward: -0.000939
iter 800. reward: -0.000504
iter 900. reward: -0.000522
iter 1000. reward: -0.000178

Now we have the optimized weights and we can update our model:

optimized_weights = es.get_weights()
model.set_weights(optimized_weights)

Todo

  • Add distribution support over network
Owner
Mika
Mika
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
Target Propagation via Regularized Inversion

Target Propagation via Regularized Inversion The present code implements an ideal formulation of target propagation using regularized inverses compute

Vincent Roulet 0 Dec 02, 2021
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

Filippo Bianchi 249 Dec 21, 2022
SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

CORNELLSASLAB SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab Instructions: This python code can be used to convert SAS out

2 Jan 26, 2022
ComputerVision - This repository aims at realized easy network architecture

ComputerVision This repository aims at realized easy network architecture Colori

DongDong 4 Dec 14, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver

IDRL 105 Dec 17, 2022
Implementing yolov4 target detection and tracking based on nao robot

Implementing yolov4 target detection and tracking based on nao robot

6 Apr 19, 2022
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning

Camera Distortion-aware 3D Human Pose Estimation in Video with Optimization-based Meta-Learning This is the official repository of "Camera Distortion-

Hanbyel Cho 12 Oct 06, 2022
PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use.

Terry Zhuo 58 Oct 11, 2022
Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks)

Pytorch implementation of Relational Networks - A simple neural network module for relational reasoning Implemented & tested on Sort-of-CLEVR task. So

Kim Heecheol 800 Dec 05, 2022
An efficient and easy-to-use deep learning model compression framework

TinyNeuralNetwork 简体中文 TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neura

Alibaba 441 Dec 25, 2022
Pytorch domain adaptation package

DomainAdaptation This package is created to tackle the problem of domain shifts when dealing with two domains of different feature distributions. In d

Institute of Computational Perception 7 Oct 22, 2022
PyTorch implementation of Super SloMo by Jiang et al.

Super-SloMo PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun

Avinash Paliwal 2.9k Jan 03, 2023
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Xuhua Huang 5 Aug 02, 2022