Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Overview

MViTs Excel at Class-agnostic Object Detection

PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz, Hanoona Rasheed, Salman Khan, Fahad Shahbaz Khan, Rao Muhammad Anwer and Ming-Hsuan Yang

Paper: https://arxiv.org/abs/2111.11430


main figure

Abstract: What constitutes an object? This has been a long-standing question in computer vision. Towards this goal, numerous learning-free and learning-based approaches have been developed to score objectness. However, they generally do not scale well across new domains and for unseen objects. In this paper, we advocate that existing methods lack a top-down supervision signal governed by human-understandable semantics. To bridge this gap, we explore recent Multi-modal Vision Transformers (MViT) that have been trained with aligned image-text pairs. Our extensive experiments across various domains and novel objects show the state-of-the-art performance of MViTs to localize generic objects in images. Based on these findings, we develop an efficient and flexible MViT architecture using multi-scale feature processing and deformable self-attention that can adaptively generate proposals given a specific language query. We show the significance of MViT proposals in a diverse range of applications including open-world object detection, salient and camouflage object detection, supervised and self-supervised detection tasks. Further, MViTs offer enhanced interactability with intelligible text queries.


Architecture overview of MViTs used in this work

Architecture overview


Results


Class-agnostic OD performance of MViTs in comparison with uni-modal detector (RetinaNet) on several datasets. MViTs show consistently good results on all datasets.

Results


Enhanced Interactability: Effect of using different intuitive text queries on the MDef-DETR class-agnostic OD performance. Combining detections from multiple queries captures varying aspects of objectness.

Results


Generalization to Rare/Novel Classes: MDef-DETR class-agnostic OD performance on rarely and frequently occurring categories in the pretraining captions. The numbers on top of the bars indicate occurrences of the corresponding category in the training dataset. The MViT achieves good recall values even for the classes with no or very few occurrences.

Results


Open-world Object Detection: Effect of using class-agnostic OD proposals from MDef-DETR for pseudo labelling of unknowns in Open World Detector (ORE).

Results


Pretraining for Class-aware Object Detection: Effect of using MDef-DETR proposals for pre-training of DETReg instead of Selective Search proposals.

Results


Evaluation

The provided codebase contains the pre-computed detections for all datasets using ours MDef-DETR model. The provided directory structure is as follows,

-> README.md
-> LICENSE
-> get_eval_metrics.py
-> get_multi_dataset_eval_metrics.py
-> data
    -> voc2007
        -> combined.pkl
    -> coco
        -> combined.pkl
    -> kitti
        -> combined.pkl
    -> kitchen
        -> combined.pkl
    -> cliaprt
        -> combined.pkl
    -> comic
        -> combined.pkl
    -> watercolor
        -> combined.pkl
    -> dota
        -> combined.pkl

Where combined.pkl contains the combined detections from multiple intutive text queries for corresponding datasets. (Refer Section 5.1: Enhanced Interactability for more details)

Download the annotations for all datasets and arrange them as shown below. Note that the script expect COCO annotations in standard COCO format & annotations of all other datasets in VOC format.

...
...
-> data
    -> voc2007
        -> combined.pkl
        -> Annotations
    -> coco
        -> combined.pkl
        -> instances_val2017_filt.json
    -> kitti
        -> combined.pkl
        -> Annotations
        ...
    -> kitchen
        -> combined.pkl
        -> Annotations
    -> cliaprt
        -> combined.pkl
        -> Annotations
    -> comic
        -> combined.pkl
        -> Annotations
    -> watercolor
        -> combined.pkl
        -> Annotations
    -> dota
        -> combined.pkl
        -> Annotations

Once the above mentioned directory structure is created, follow the following steps to calculate the metrics.

  1. Install numpy
$ pip install numpy
  1. Calculate metrics
$ python get_multi_dataset_eval_metrics.py

The calculated metrics will be stored in a data.csv file in the same directory.


Citation

If you use our work, please consider citing:

@article{Maaz2021Multimodal,
    title={Multi-modal Transformers Excel at Class-agnostic Object Detection},
    author={Muhammad Maaz and Hanoona Rasheed and Salman Khan and Fahad Shahbaz Khan and Rao Muhammad Anwer and Ming-Hsuan Yang},
    journal={ArXiv 2111.11430},
    year={2021}
}

Contact

Should you have any question, please contact [email protected] or [email protected]

🚀 Note: The repository contains the minimum evaluation code. The complete training and inference scripts along with pretrained models will be released soon. Stay Tuned!

Comments
  • aligning image text pairs

    aligning image text pairs

    I have a question on the paper: you train on aligned image-text pairs. How do you create this alignment? is it the same way as in MDeTr? I did not fully understand from the paper, especially for non-natural images like satellite images or medical images.

    opened by nikky4D 6
  • Loading checkpoints for inference

    Loading checkpoints for inference

    Which checkpoints in drive link you provided will load correctly in default MDefDETR model without any errors? Im getting missing/unexpected keys errors.

    documentation 
    opened by KaleemW 4
  • Is EMA used in this work?

    Is EMA used in this work?

    Hello author, thanks for your great work. I raise a question about the usage of Exponential Moving Average (EMA) in this paper, hoping you can provide me with some clues. It seems that this paper does not detail in this part. As far as I know, MDETR uses it and evaluate use the EMA model. So I wonder is it used in this work? If it is actually used, why should we evaluate by the EMA model rather than the original one?

    opened by JacobYuan7 4
  • one of the variables needed for gradient computation has been modified by an inplace operation

    one of the variables needed for gradient computation has been modified by an inplace operation

    RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.LongTensor [2, 20]] is at version 3; expected version 2 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

    This error will terminate the training procedure when training mdef_detr using the PyTorch environment as you advise(torch==1.8.0+cu111).

    And I found the variables of 'transformer.text_encoder.pooler.dense.weight' does not have grad. This may be the main reason for this error.

    opened by xushilin1 2
  • Loading the Faster RCNN checkpoint

    Loading the Faster RCNN checkpoint

    Greetings

    The readme states: (Feb 01, 2022) Training codes for MDef-DETR and MDef-DETR minus Language models are released -> training/README.md Instructions to use class-agnostic object detection behavior of MDef-DETR on different applications are released -> applications/README.md All the pretrained models (MDef-DETR, Def-DETR, MDETR, DETReg, Faster-RCNN, RetinaNet, ORE, and others), along with the instructions to reproduce the results are released -> this link

    Following the link to the google drive, only provides me with the model weight for the Faster-RCNN, but not with instructions on how to load it and which framework to use. I have tried creating a Faster-RCNN-resnet101 model with pytorch, but when I load the model weight, it states that the layer names does not match. Any guidance would be much appreciated.

    Best regards Martin

    uni-modal-detectors 
    opened by MartinPedersenpp 2
  • Need to understand how to import weights

    Need to understand how to import weights

    Hello,

    Firstly, I'd like to congratulate you for bringing this amazing work. Class agnostic object detection is much needed currently in the industry and this would be a great way to solve the problem.

    I wanted to test your model on some custom data. However, I cannot import pre-trained weights from the link you have provided. I can see the zip file but I couldn't find a way to import them. I'm using OpenCV to import weights. It is asking me to have a config file as well as .weights file.

    Could you please help me which library to use to import weights when I'm working on a jupyter notebook?

    Thank you,

    opened by abhi-vellala 2
  • pretrain data download

    pretrain data download

    if is it possible to split pretrain data into multiple seperate zip files。 I download data from google drive : https://drive.google.com/drive/folders/1-3kAsyZIVFbNelRXrF93Y5tMgOypv2jV i cannot download this data because of google drive time limit(less than 1 hours) and my limit network bandwidth。

    documentation 
    opened by zhouxingguang 1
  • Training code release

    Training code release

    This pull request adds

    • Training codes for MDef-DETR and MDef-DETR minus Language models
    • Instructions to use class-agnostic object detection behavior of MDef-DETR on different applications
    • All the pre-trained models (MDef-DETR, Def-DETR, MDETR, DETReg, Faster-RCNN, RetinaNet, ORE, and others), along with the instructions to reproduce the results
    opened by mmaaz60 0
  • Questions about your training procedure?

    Questions about your training procedure?

    To my understanding, I think you use image-text pairs as inputs and only bbox annotations as supervision signals without any class labels, does it right?

    opened by GYslchen 1
  • Questions about your pretrained model

    Questions about your pretrained model

    Does the pre-trained model you provide cover the categories on LVIS data? If I want to do open-world object detection on the LVIS dataset, can I directly use your pre-trained model to generate the proposals or should I need to filter the dataset so that it doesn't contain any object in the LVIS dataset?

    opened by chengsilin 1
  • how to generate 'tokens_positive'  ann from detector dataset like object365?

    how to generate 'tokens_positive' ann from detector dataset like object365?

    I found 'tokens_positive' was used in your ann file. could you please release the code of how to process detect data like coco to get the 'tokens_positive' ann results?

    documentation 
    opened by zhouxingguang 1
Releases(v1.0)
  • v1.0(Feb 1, 2022)

    • Training codes for MDef-DETR and MDef-DETR minus Language models are released -> training/README.md
    • Instructions to use class-agnostic object detection behavior of MDef-DETR on different applications are released -> applications/README.md
    • All the pretrained models (MDef-DETR, Def-DETR, MDETR, DETReg, Faster-RCNN, RetinaNet, ORE, and others), along with the instructions to reproduce the results are released -> this link
    Source code(tar.gz)
    Source code(zip)
  • v0.1(Nov 25, 2021)

    Evaluation Code & Pre-trained Models

    • Releases evaluation code for MDef-DETR and 'MDef-DETR w/o Language Branch' model
    • Releases the pre-trained weights for both models
    • Releases the pre-computed predictions for both the models
    Source code(tar.gz)
    Source code(zip)
Owner
Muhammad Maaz
An Electrical Engineer with experience in Computer Vision software development. Skilled in Machine Learning, Deep Learning and Computer Vision.
Muhammad Maaz
Weakly Supervised Text-to-SQL Parsing through Question Decomposition

Weakly Supervised Text-to-SQL Parsing through Question Decomposition The official repository for the paper "Weakly Supervised Text-to-SQL Parsing thro

14 Dec 19, 2022
Distributed DataLoader For Pytorch Based On Ray

Dpex——用户无感知分布式数据预处理组件 一、前言 随着GPU与CPU的算力差距越来越大以及模型训练时的预处理Pipeline变得越来越复杂,CPU部分的数据预处理已经逐渐成为了模型训练的瓶颈所在,这导致单机的GPU配置的提升并不能带来期望的线性加速。预处理性能瓶颈的本质在于每个GPU能够使用的C

Dalong 23 Nov 02, 2022
Python framework for Stochastic Differential Equations modeling

SDElearn: a Python package for SDE modeling This package implements functionalities for working with Stochastic Differential Equations models (SDEs fo

4 May 10, 2022
This is a repo of basic Machine Learning!

Basic Machine Learning This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resource

Ekram Asif 53 Dec 31, 2022
PiRank: Learning to Rank via Differentiable Sorting

PiRank: Learning to Rank via Differentiable Sorting This repository provides a reference implementation for learning PiRank-based models as described

54 Dec 17, 2022
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar: Parallel Training of Large Language Models via a Chunk-based Memory Management Meeting PatrickStar Pre-Trained Models (PTM) are becoming

Tencent 633 Dec 28, 2022
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
Unofficial PyTorch Implementation of "DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features"

Pytorch Implementation of Deep Orthogonal Fusion of Local and Global Features (DOLG) This is the unofficial PyTorch Implementation of "DOLG: Single-St

DK 96 Jan 06, 2023
This repository provides the official code for GeNER (an automated dataset Generation framework for NER).

GeNER This repository provides the official code for GeNER (an automated dataset Generation framework for NER). Overview of GeNER GeNER allows you to

DMIS Laboratory - Korea University 50 Nov 30, 2022
official implementation for the paper "Simplifying Graph Convolutional Networks"

Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After

Tianyi 727 Jan 01, 2023
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"

SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe

Wei Jin 85 Oct 13, 2022
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and

Nathan Frey 32 Dec 06, 2022
This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

The-Emergence-of-Objectness This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

44 Oct 08, 2022
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022
Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

PubTables-1M This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training a

Microsoft 365 Jan 04, 2023
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation (ICCV 2021)

Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation Home | PyTorch BigGAN Discovery | TensorFlow ProGAN Regulariza

Yuxiang Wei 54 Dec 30, 2022
Multiple-Object Tracking with Transformer

TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training

Peize Sun 537 Jan 04, 2023
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"

Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns

Kaizhi Yang 42 Dec 09, 2022