3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

Overview

3DIAS_Pytorch

This repository contains the official code to reproduce the results from the paper:

3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

[project page] [arXiv]

Installation

Clone this repository into any place you want.

git clone https://github.com/myavartanoo/3DIAS_PyTorch.git
cd 3DIAS_Pytorch

Dependencies

  • Python 3.8.5
  • PyTorch 1.7.1
  • numpy
  • Pillow
  • open3d
  • PyMCubes (or build this repo)

Install dependencies in a conda environment.

conda create -n 3dias python=3.8
conda activate 3dias

pip install -r requirements.txt

Pretrained model

Download config.json and checkpoint-epoch#.pth from below links and save in weigths folder. Note that we get Multi-class weight by training with all-classes and Single-class weight by training with each class

Multi-class

Dropbox or Mirror

Single-class

To download all the single-class weigths, run

sh download_weights.sh

Or you can get the weights one-by-one.

airplane / bench / cabinet / car / chair / display / lamp / speaker / rifle / sofa / table / phone / vessel

Quickstart (Demo)

You can now test our demo code on the provided input images in the input folder. (Or you can use other images in shapeNet.) To this end, simply run,

.png" --config "./weights/config.json" --resume "./weights/checkpoint-epoch890.pth" ">
CUDA_VISIBLE_DEVICES=0 python demo.py --inputimg "./input/
    
     .png" --config "./weights/config.json" --resume "./weights/checkpoint-epoch890.pth" 

    

The result meshes are saved in output folder. (We've created a few example meshes)

  • total.ply is a whole mesh
  • parts_.ply are meshes for parts To see the mesh, you can use meshlab

If you want to visualize meshes with open3d, run with --visualize option as below.

.png" --config "./weights/config.json" --resume "./weights/checkpoint-epoch890.pth" --visualize ">
CUDA_VISIBLE_DEVICES=0 python demo.py --inputimg "./input/
    
     .png" --config "./weights/config.json" --resume "./weights/checkpoint-epoch890.pth" --visualize

    

The preprocessed dataset, training, testing code will be distributed soon.

Citation

If you find our code or paper useful, please consider citing

@inproceedings{3DIAS,
    title = {3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces},
    author = {Mohsen Yavartanoo, JaeYoung Chung, Reyhaneh Neshatavar, Kyoung Mu Lee},
    booktitle = {Proceedings IEEE Conf. on International Conference on Computer Vision (ICCV)},
    year = {2021}
}
Owner
Mohsen Yavartanoo
I am a master student at Seoul National University. My research interest is, Computer Vision, Deep Learning, 3D Objection Recognition, 3D Object Detection.
Mohsen Yavartanoo
ArtEmis: Affective Language for Art

ArtEmis: Affective Language for Art Created by Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov, Mohamed Elhoseiny, Leonidas J. Guibas Introducti

Panos 268 Dec 12, 2022
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern

Isen (Songyao Jiang) 128 Dec 08, 2022
[ICML 2021] A fast algorithm for fitting robust decision trees.

GROOT: Growing Robust Trees Growing Robust Trees (GROOT) is an algorithm that fits binary classification decision trees such that they are robust agai

Cyber Analytics Lab 17 Nov 21, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
This repository compare a selfie with images from identity documents and response if the selfie match.

aws-rekognition-facecompare This repository compare a selfie with images from identity documents and response if the selfie match. This code was made

1 Jan 27, 2022
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
Universal Probability Distributions with Optimal Transport and Convex Optimization

Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing

Rianne van den Berg 172 Dec 13, 2022
catch-22: CAnonical Time-series CHaracteristics

catch22 - CAnonical Time-series CHaracteristics About catch22 is a collection of 22 time-series features coded in C that can be run from Python, R, Ma

Carl H Lubba 229 Oct 21, 2022
A super lightweight Lagrangian model for calculating millions of trajectories using ERA5 data

Easy-ERA5-Trck Easy-ERA5-Trck Galleries Install Usage Repository Structure Module Files Version iteration Easy-ERA5-Trck is a super lightweight Lagran

Zhenning Li 26 Nov 19, 2022
A fast Protein Chain / Ligand Extractor and organizer.

Are you tired of using visualization software, or full blown suites just to separate protein chains / ligands ? Are you tired of organizing the mess o

Amine Abdz 9 Nov 06, 2022
Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL)

Scribble-Supervised LiDAR Semantic Segmentation Dataset and code release for the paper Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORA

102 Dec 25, 2022
A framework for joint super-resolution and image synthesis, without requiring real training data

SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met

83 Jan 01, 2023
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training @ KDD 2020

GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training Original implementation for paper GCC: Graph Contrastive Coding for Graph Neural N

THUDM 274 Dec 27, 2022
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
A machine learning package for streaming data in Python. The other ancestor of River.

scikit-multiflow is a machine learning package for streaming data in Python. creme and scikit-multiflow are merging into a new project called River. W

670 Dec 30, 2022
Quantization library for PyTorch. Support low-precision and mixed-precision quantization, with hardware implementation through TVM.

HAWQ: Hessian AWare Quantization HAWQ is an advanced quantization library written for PyTorch. HAWQ enables low-precision and mixed-precision uniform

Zhen Dong 293 Dec 30, 2022
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022