This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

Related tags

Deep LearningMOTR
Overview

MOTR: End-to-End Multiple-Object Tracking with TRansformer

PWC PWC

This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

Introduction

TL; DR. MOTR is a fully end-to-end multiple-object tracking framework based on Transformer. It directly outputs the tracks within the video sequences without any association procedures.

Abstract. The key challenge in multiple-object tracking (MOT) task is temporal modeling of the object under track. Existing tracking-by-detection methods adopt simple heuristics, such as spatial or appearance similarity. Such methods, in spite of their commonality, are overly simple and insufficient to model complex variations, such as tracking through occlusion. Inherently, existing methods lack the ability to learn temporal variations from data. In this paper, we present MOTR, the first fully end-to-end multiple-object tracking framework. It learns to model the long-range temporal variation of the objects. It performs temporal association implicitly and avoids previous explicit heuristics. Built on Transformer and DETR, MOTR introduces the concept of “track query”. Each track query models the entire track of an object. It is transferred and updated frame-by-frame to perform object detection and tracking, in a seamless manner. Temporal aggregation network combined with multi-frame training is proposed to model the long-range temporal relation. Experimental results show that MOTR achieves state-of-the-art performance.

Main Results

Method Dataset Train Data MOTA IDF1 IDS URL
MOTR MOT16 MOT17+CrowdHuman Val 65.8 67.1 547 model
MOTR MOT17 MOT17+CrowdHuman Val 66.5 67.0 1884 model

Note:

  1. All models of MOTR are trained on 8 NVIDIA Tesla V100 GPUs.
  2. The training time is about 2.5 days for 200 epochs;
  3. The inference speed is about 7.5 FPS for resolution 1536x800;
  4. All models of MOTR are trained with ResNet50 with pre-trained weights on COCO dataset.

Installation

The codebase is built on top of Deformable DETR.

Requirements

  • Linux, CUDA>=9.2, GCC>=5.4

  • Python>=3.7

    We recommend you to use Anaconda to create a conda environment:

    conda create -n deformable_detr python=3.7 pip

    Then, activate the environment:

    conda activate deformable_detr
  • PyTorch>=1.5.1, torchvision>=0.6.1 (following instructions here)

    For example, if your CUDA version is 9.2, you could install pytorch and torchvision as following:

    conda install pytorch=1.5.1 torchvision=0.6.1 cudatoolkit=9.2 -c pytorch
  • Other requirements

    pip install -r requirements.txt
  • Build MultiScaleDeformableAttention

    cd ./models/ops
    sh ./make.sh

Usage

Dataset preparation

Please download MOT17 dataset and CrowdHuman dataset and organize them like FairMOT as following:

.
├── crowdhuman
│   ├── images
│   └── labels_with_ids
├── MOT15
│   ├── images
│   ├── labels_with_ids
│   ├── test
│   └── train
├── MOT17
│   ├── images
│   ├── labels_with_ids

Training and Evaluation

Training on single node

You can download COCO pretrained weights from Deformable DETR. Then training MOTR on 8 GPUs as following:

sh configs/r50_motr_train.sh

Evaluation on MOT15

You can download the pretrained model of MOTR (the link is in "Main Results" session), then run following command to evaluate it on MOT15 train dataset:

sh configs/r50_motr_eval.sh

For visual in demo video, you can enable 'vis=True' in eval.py like:

det.detect(vis=True)

Evaluation on MOT17

You can download the pretrained model of MOTR (the link is in "Main Results" session), then run following command to evaluate it on MOT17 test dataset (submit to server):

sh configs/r50_motr_submit.sh

Citing MOTR

If you find MOTR useful in your research, please consider citing:

@article{zeng2021motr,
  title={MOTR: End-to-End Multiple-Object Tracking with TRansformer},
  author={Zeng, Fangao and Dong, Bin and Wang, Tiancai and Chen, Cheng and Zhang, Xiangyu and Wei, Yichen},
  journal={arXiv preprint arXiv:2105.03247},
  year={2021}
}
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Evgenii Nikishin 43 Sep 28, 2022
Learning Representational Invariances for Data-Efficient Action Recognition

Learning Representational Invariances for Data-Efficient Action Recognition Official PyTorch implementation for Learning Representational Invariances

Virginia Tech Vision and Learning Lab 27 Nov 22, 2022
BarcodeRattler - A Raspberry Pi Powered Barcode Reader to load a game on the Mister FPGA using MBC

Barcode Rattler A Raspberry Pi Powered Barcode Reader to load a game on the Mist

Chrissy 29 Oct 31, 2022
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
MODNet: Trimap-Free Portrait Matting in Real Time

MODNet is a model for real-time portrait matting with only RGB image input.

Zhanghan Ke 2.8k Dec 30, 2022
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
Official code repository for the publication "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons"

Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons This repository contains the code to repr

Computational Neuroscience, University of Bern 3 Aug 04, 2022
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
Multi-task head pose estimation in-the-wild

Multi-task head pose estimation in-the-wild We provide C++ code in order to replicate the head-pose experiments in our paper https://ieeexplore.ieee.o

Roberto Valle 26 Oct 06, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 03, 2023
Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Renato Almeida de Oliveira 18 Aug 31, 2022
Beancount-mercury - Beancount importer for Mercury Startup Checking

beancount-mercury beancount-mercury provides an Importer for converting CSV expo

Michael Lynch 4 Oct 31, 2022
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
Voice control for Garry's Mod

WIP: Talonvoice GMod integrations Very work in progress voice control demo for Garry's Mod. HOWTO Install https://talonvoice.com/ Press https://i.imgu

Meta Construct 5 Nov 15, 2022
Portfolio analytics for quants, written in Python

QuantStats: Portfolio analytics for quants QuantStats Python library that performs portfolio profiling, allowing quants and portfolio managers to unde

Ran Aroussi 2.7k Jan 08, 2023
Train an imgs.ai model on your own dataset

imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings.

Fabian Offert 5 Dec 21, 2021