A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules

Overview

CapsNet-Tensorflow

Contributions welcome License Gitter

A Tensorflow implementation of CapsNet based on Geoffrey Hinton's paper Dynamic Routing Between Capsules

capsVSneuron

Notes:

  1. The current version supports MNIST and Fashion-MNIST datasets. The current test accuracy for MNIST is 99.64%, and Fashion-MNIST 90.60%, see details in the Results section
  2. See dist_version for multi-GPU support
  3. Here(知乎) is an article explaining my understanding of the paper. It may be helpful in understanding the code.

Important:

If you need to apply CapsNet model to your own datasets or build up a new model with the basic block of CapsNet, please follow my new project CapsLayer, which is an advanced library for capsule theory, aiming to integrate capsule-relevant technologies, provide relevant analysis tools, develop related application examples, and promote the development of capsule theory. For example, you can use capsule layer block in your code easily with the API capsLayer.layers.fully_connected and capsLayer.layers.conv2d

Requirements

  • Python
  • NumPy
  • Tensorflow>=1.3
  • tqdm (for displaying training progress info)
  • scipy (for saving images)

Usage

Step 1. Download this repository with git or click the download ZIP button.

$ git clone https://github.com/naturomics/CapsNet-Tensorflow.git
$ cd CapsNet-Tensorflow

Step 2. Download MNIST or Fashion-MNIST dataset. In this step, you have two choices:

  • a) Automatic downloading with download_data.py script
$ python download_data.py   (for mnist dataset)
$ python download_data.py --dataset fashion-mnist --save_to data/fashion-mnist (for fashion-mnist dataset)
  • b) Manual downloading with wget or other tools, move and extract dataset into data/mnist or data/fashion-mnist directory, for example:
$ mkdir -p data/mnist
$ wget -c -P data/mnist http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
$ wget -c -P data/mnist http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
$ wget -c -P data/mnist http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
$ wget -c -P data/mnist http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
$ gunzip data/mnist/*.gz

Step 3. Start the training(Using the MNIST dataset by default):

$ python main.py
$ # or training for fashion-mnist dataset
$ python main.py --dataset fashion-mnist
$ # If you need to monitor the training process, open tensorboard with this command
$ tensorboard --logdir=logdir
$ # or use `tail` command on linux system
$ tail -f results/val_acc.csv

Step 4. Calculate test accuracy

$ python main.py --is_training=False
$ # for fashion-mnist dataset
$ python main.py --dataset fashion-mnist --is_training=False

Note: The default parameters of batch size is 128, and epoch 50. You may need to modify the config.py file or use command line parameters to suit your case, e.g. set batch size to 64 and do once test summary every 200 steps: python main.py --test_sum_freq=200 --batch_size=48

Results

The pictures here are plotted by tensorboard and my tool plot_acc.R

  • training loss

total_loss margin_loss reconstruction_loss

Here are the models I trained and my talk and something else:

Baidu Netdisk(password:ahjs)

  • The best val error(using reconstruction)
Routing iteration 1 3 4
val error 0.36 0.36 0.41
Paper 0.29 0.25 -

test_acc

My simple comments for capsule

  1. A new version neural unit(vector in vector out, not scalar in scalar out)
  2. The routing algorithm is similar to attention mechanism
  3. Anyway, a great potential work, a lot to be built upon

My weChat:

my_wechat

Reference

Owner
Huadong Liao
Explore Nature from an Omics Perspective
Huadong Liao
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

AugMix Introduction We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented ima

Google Research 876 Dec 17, 2022
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022
Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020 This repository provides Python code and data to reproduce expe

Deezer 48 Jan 02, 2023
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution.

WSRGlow The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution. Audio sa

Kexun Zhang 96 Jan 03, 2023
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
A Model for Natural Language Attack on Text Classification and Inference

TextFooler A Model for Natural Language Attack on Text Classification and Inference This is the source code for the paper: Jin, Di, et al. "Is BERT Re

Di Jin 418 Dec 16, 2022
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
Powerful and efficient Computer Vision Annotation Tool (CVAT)

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 01, 2023
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
Python implementation of "Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation"

MIPNet: Multi-Instance Pose Networks This repository is the official pytorch python implementation of "Multi-Instance Pose Networks: Rethinking Top-Do

Rawal Khirodkar 57 Dec 12, 2022
CL-Gym: Full-Featured PyTorch Library for Continual Learning

CL-Gym: Full-Featured PyTorch Library for Continual Learning CL-Gym is a small yet very flexible library for continual learning research and developme

Iman Mirzadeh 36 Dec 25, 2022
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Wouter Van Gansbeke 80 Nov 20, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022