# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing JGraphT) and Pandas(for data analysis) are installed. To install Maven on Ubuntu, type the following commands on terminal: sudo apt-get update sudo apt-get install maven For Pandas, type the following: pip3 install pandas ( sudo apt-get install python3-pip if pip is not installed already) # 2. Compilation Type the following to compile this project: mvn compile # 3. Running the code Below is the command for running tests for SNAP(DIMACS) and grid data. java -Xms24G -Xmx48G -Xmn36G -Xss1G -cp $CLASSPATHS shell.TestSNAP (the filename of data; just the name and not the path) (# of tests) (randomization seed) java -Xms32G -Xmx64G -Xmn48G -Xss1G -cp $CLASSPATHS shell.TestGrid (Maximum dimension) (dimension increment) [List of the values for k, space-separated] You may change the randomization seed (vertex selection) to assess reproducibility. (In our experiment, the seed was set to 2021.) For the data, check "src/SNAP(or DIMACS)". Output "test_result.csv" will be saved on "target" directory. Check if 'CLASSPATHS' is set properly. Please refer to " sample.sh " for examples & further details. #4. Obtaining average processing time and diversity First, move to the target directory. Then run get_averages.py python3 get_averages (.csv file name) [list of the values for k, space-separated. Optional parameter.]
Diverse graph algorithms implemented using JGraphT library.
Overview
CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework
CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework This repository contains a framework for Recommender Systems (RecSys), a
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"
1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s
Solving reinforcement learning tasks which require language and vision
Multimodal Reinforcement Learning JAX implementations of the following multimodal reinforcement learning approaches. Dual-coding Episodic Memory from
Look Who’s Talking: Active Speaker Detection in the Wild
Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.
FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)
Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener
Make Watson Assistant send messages to your Discord Server
Make Watson Assistant send messages to your Discord Server Prerequisites Sign up for an IBM Cloud account. Fill in the required information and press
Official PyTorch implementation of SyntaSpeech (IJCAI 2022)
SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech | | | | 中文文档 This repository is the official PyTorch implementation of our IJCAI-2022
This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape
Metashape-Utils This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape, given a set of 2D coordinates
Get started with Machine Learning with Python - An introduction with Python programming examples
Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all
Unsupervised clustering of high content screen samples
Microscopium Unsupervised clustering and dataset exploration for high content screens. See microscopium in action Public dataset BBBC021 from the Broa
Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Claims.
MTM This is the official repository of the paper: Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Cla
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.
Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou
Learning Tracking Representations via Dual-Branch Fully Transformer Networks
Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and
RP-GAN: Stable GAN Training with Random Projections
RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"
Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w
ThunderGBM: Fast GBDTs and Random Forests on GPUs
Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".
3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition The official code of ABINet (CVPR 2021, Oral).
Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent
Narya The Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent. This repository