# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing JGraphT) and Pandas(for data analysis) are installed. To install Maven on Ubuntu, type the following commands on terminal: sudo apt-get update sudo apt-get install maven For Pandas, type the following: pip3 install pandas ( sudo apt-get install python3-pip if pip is not installed already) # 2. Compilation Type the following to compile this project: mvn compile # 3. Running the code Below is the command for running tests for SNAP(DIMACS) and grid data. java -Xms24G -Xmx48G -Xmn36G -Xss1G -cp $CLASSPATHS shell.TestSNAP (the filename of data; just the name and not the path) (# of tests) (randomization seed) java -Xms32G -Xmx64G -Xmn48G -Xss1G -cp $CLASSPATHS shell.TestGrid (Maximum dimension) (dimension increment) [List of the values for k, space-separated] You may change the randomization seed (vertex selection) to assess reproducibility. (In our experiment, the seed was set to 2021.) For the data, check "src/SNAP(or DIMACS)". Output "test_result.csv" will be saved on "target" directory. Check if 'CLASSPATHS' is set properly. Please refer to " sample.sh " for examples & further details. #4. Obtaining average processing time and diversity First, move to the target directory. Then run get_averages.py python3 get_averages (.csv file name) [list of the values for k, space-separated. Optional parameter.]
Diverse graph algorithms implemented using JGraphT library.
Overview
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.
PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid
Implement face detection, and age and gender classification, and emotion classification.
YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove
Release of the ConditionalQA dataset
ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in
Least Square Calibration for Peer Reviews
Least Square Calibration for Peer Reviews Requirements gurobipy - for solving convex programs GPy - for Bayesian baseline numpy pandas To generate p
Prefix-Tuning: Optimizing Continuous Prompts for Generation
Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script
HyperDict - Self linked dictionary in Python
Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self
Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge
Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I
Hand Gesture Volume Control | Open CV | Computer Vision
Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples
Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample
A Simulation Environment to train Robots in Large Realistic Interactive Scenes
iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend
Fashion Recommender System With Python
Fashion-Recommender-System Thr growing e-commerce industry presents us with a la
The code is the training example of AAAI2022 Security AI Challenger Program Phase 8: Data Centric Robot Learning on ML models.
Example code of [Tianchi AAAI2022 Security AI Challenger Program Phase 8]
A template repository for submitting a job to the Slurm Cluster installed at the DISI - University of Bologna
Cluster di HPC con GPU per esperimenti di calcolo (draft version 1.0) Per poter utilizzare il cluster il primo passo è abilitare l'account istituziona
RE3: State Entropy Maximization with Random Encoders for Efficient Exploration
State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021) Code for State Entropy Maximization with Random Encoders f
LSTM model trained on a small dataset of 3000 names written in PyTorch
LSTM model trained on a small dataset of 3000 names. Model generates names from model by selecting one out of top 3 letters suggested by model at a time until an EOS (End Of Sentence) character is no
High-fidelity 3D Model Compression based on Key Spheres
High-fidelity 3D Model Compression based on Key Spheres This repository contains the implementation of the paper: Yuanzhan Li, Yuqi Liu, Yujie Lu, Siy
Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation
Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation By: Zayd Hammoudeh and Daniel Lowd Paper: Arxiv Preprint Coming soo
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems
Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe