Outlier Exposure with Confidence Control for Out-of-Distribution Detection

Overview

PWC PWC PWC PWC

OOD-detection-using-OECC

This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution Detection. Accepted as a Journal article in Neurocomputing, 2021.

1. What is Outlier Exposure with Confidence Control (OECC)?

Outlier Exposure with Confidence Control (OECC) is a technique that helps a Deep Neural Network (DNN) learn how to distinguish in- and out-of-distribution (OOD) data without requiring access to OOD samples. This technique has been shown that it can generalize to new distibutions. To learn how to distinguish in- and out-of-distribution samples, OECC makes a DNN to be highly uncertain for OOD samples by producing a uniform distribution at the output of the softmax layer. At the same time, it also makes it to make predictions for in-distribution samples with an average confidence close to its training accuracy, i.e. it controls its confidence.

The overall OECC loss function outperforms the previous SOTA results in OOD detection with OE both in image and text classification tasks. Additionally, we experimentally show in the paper that by combining OECC with SOTA post-training methods for OOD detection like the Mahalanobis Detector or the Gramian Matrices, one can achieve SOTA results in the OOD detection task.

2. Visualize the idea behind OECC

Figure. Histogram of softmax probabilities with CIFAR-10 as in-distribution data Din and Places365 as Out-of-Distribution (OOD) data Dout. Note that Din and Dout are disjoint. Left: Standard maximum softmax probability detector. Right: Maximum softmax probability detector using OECC.

3. Download Datasets

Some of the less common datasets can be downloaded by the following links: 80 Million Tiny Images, Icons-50, Textures, Chars74K, and Places365. Please also try this link in case the previous link is not working 80 Million Tiny Images.

4. How to Run

Each folder has its own separate README file with full details describing how to run the provided code.

5. Citation

If you find this useful in your research, please consider citing:

@article{PAPADOPOULOS2021138,
    title = {Outlier exposure with confidence control for out-of-distribution detection},
    journal = {Neurocomputing},
    volume = {441},
    pages = {138-150},
    year = {2021},
    issn = {0925-2312},
    doi = {https://doi.org/10.1016/j.neucom.2021.02.007},
    url = {https://www.sciencedirect.com/science/article/pii/S0925231221002393},
    author = {Aristotelis-Angelos Papadopoulos and Mohammad Reza Rajati and Nazim Shaikh and Jiamian Wang},
    keywords = {Out-of-distribution detection, Regularization, Anomaly detection, Deep neural networks, Outlier exposure, Calibration}
}

6. Code References

A part of the code has been based on the publicly available codes of Outlier Exposure and Mahalanobis.

Owner
Nazim Shaikh
Nazim Shaikh
Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction

IMDB Success Predictor Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine

Gautam Diwan 1 Jan 18, 2022
Paper Code:A Self-adaptive Weighted Differential Evolution Approach for Large-scale Feature Selection

1. SaWDE.m is the main function 2. DataPartition.m is used to randomly partition the original data into training sets and test sets with a ratio of 7

wangxb 14 Dec 08, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
Repositório da disciplina de APC, no segundo semestre de 2021

NOTAS FINAIS: https://github.com/fabiommendes/apc2018/blob/master/nota-final.pdf Algoritmos e Programação de Computadores Este é o Git da disciplina A

16 Dec 16, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t

Digital Humanities 5 Jun 21, 2022
Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

tonne 1.4k Dec 29, 2022
Auxiliary Raw Net (ARawNet) is a ASVSpoof detection model taking both raw waveform and handcrafted features as inputs, to balance the trade-off between performance and model complexity.

Overview This repository is an implementation of the Auxiliary Raw Net (ARawNet), which is ASVSpoof detection system taking both raw waveform and hand

6 Jul 08, 2022
Model-based reinforcement learning in TensorFlow

Bellman Website | Twitter | Documentation (latest) What does Bellman do? Bellman is a package for model-based reinforcement learning (MBRL) in Python,

46 Nov 09, 2022
OpenPCDet Toolbox for LiDAR-based 3D Object Detection.

OpenPCDet OpenPCDet is a clear, simple, self-contained open source project for LiDAR-based 3D object detection. It is also the official code release o

OpenMMLab 3.2k Dec 31, 2022
HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

HeatNet HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events glob

Google Research 6 Jul 07, 2022
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset

Shangchen Zhou 278 Jan 03, 2023
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
LRBoost is a scikit-learn compatible approach to performing linear residual based stacking/boosting.

LRBoost is a sckit-learn compatible package for linear residual boosting. LRBoost combines a linear estimator and a non-linear estimator to leverage t

Andrew Patton 5 Nov 23, 2022
Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.

WIBAM (Work in progress) Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data 3D object dete

Matthew Howe 10 Aug 24, 2022
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
FOSS Digital Asset Distribution Platform built on Frappe.

Digistore FOSS Digital Assets Marketplace. Distribute digital assets, like a pro. Video Demo Here Features Create, attach and list digital assets (PDF

Mohammad Hussain Nagaria 30 Dec 08, 2022