Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Overview

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

The skip connections in U-Net pass features from the levels of encoder to the ones of decoder in a symmetrical way, which makes U-Net and its variants become state-of-the-art approaches for biomedical image segmentation. However, the U-Net skip connections are unidirectional without considering feedback from the decoder, which may be used to further improve the segmentation performance. In this paper, we exploit the feedback information to recurrently refine the segmentation. We develop a deep bidirectional network based on the least mean square error reconstruction (Lmser) self-organizing network, an early network by folding the autoencoder along the central hidden layer. Such folding makes the neurons on the paired layers between encoder and decoder merge into one, equivalently forming bidirectional skip connections between encoder and decoder. We find that although the feedback links increase the segmentation accuracy, they may bring noise into the segmentation when the network proceeds recurrently. To tackle this issue, we present a gating and masking mechanism on the feedback connections to filter the irrelevant information. Experimental results on MoNuSeg, TNBC, and EM membrane datasets demonstrate that our method are robust and outperforms state-of-the-art methods.

This repository holds the Python implementation of the method described in the paper published in BIBM 2021.

Boheng Cao, Shikui Tu*, Lei Xu, "Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation", BIBM2021

Content

  1. Structure
  2. Requirements
  3. Data
  4. Training
  5. Testing
  6. Acknowledgement

Structure

--checkpoints

# pretrained models

--data

# data for MoNuSeg, TNBC, and EM

--pytorch_version

# code

Requirements

  • Python 3.6 or higher.
  • PIL >= 7.0.0
  • matplotlib >= 3.3.1
  • tqdm >= 4.54.1
  • imgaug >= 0.4.0
  • torch >= 1.5.0
  • torchvision >= 0.6.0

...

Data

The author of BiONet has already gathered data of three datasets (Including EM https://bionets.github.io/Piriform_data.zip).

Please refer to the official website (or project repo) for license and terms of usage.

MoNuSeg: https://monuseg.grand-challenge.org/Data/

TNBC: https://github.com/PeterJackNaylor/DRFNS

We also provide our data (For EM only includes stack 1 and 4) and pretrained models here: https://pan.baidu.com/s/1pHTexUIS8ganD_BwbWoAXA password:sjtu

or

https://drive.google.com/drive/folders/1GJq-AV1L1UNhI2WNMDuynYyGtOYpjQEi?usp=sharing

Training

As an example, for EM segmentation, you can simply run:

python main.py --train_data ./data/EM/train --valid_data ./data/EM/test --exp EM_1 --alpha=0.4

Some of the available arguments are:

Argument Description Default Type
--epochs Training epochs 300 int
--batch_size Batch size 2 int
--steps Steps per epoch 250 int
--lr Learning rate 0.01 float
--lr_decay Learning rate decay 3e-5 float
--iter recurrent iteration 3 int
--train_data Training data path ./data/monuseg/train str
--valid_data Validating data path ./data/monuseg/test str
--valid_dataset Validating dataset type monuseg str
--exp Experiment name(use the same name when testing) 1 str
--evaluate_only If only evaluate using existing model store_true action
--alpha Weight of skip/backward connection 0.4 float

Testing

For MonuSeg and TNBC, you can just use our code to test the model, for example

python main.py --valid_data ./data/tnbc --valid_dataset tnbc --exp your_experiment_id --alpha=0.4 --evaluate_only

For EM, our code can not give the Rand F-score directly, but our code will save the ground truth and result in /checkpoints/your_experiment_id/outputs, you can use the tool ImageJ and code of http://brainiac2.mit.edu/isbi_challenge/evaluation to get Rand F-score.

Acknowledgement

This project would not have been finished without using the codes or files from the following open source projects:

BiONet

Reference

Please cite our work if you find our code/paper is useful to your work.

tbd
Owner
Boheng Cao
SJTU CS
Boheng Cao
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
A curated list of awesome open source libraries to deploy, monitor, version and scale your machine learning

Awesome production machine learning This repository contains a curated list of awesome open source libraries that will help you deploy, monitor, versi

The Institute for Ethical Machine Learning 12.9k Jan 04, 2023
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Cheng Zhang 149 Jan 08, 2023
Code accompanying the paper "Wasserstein GAN"

Wasserstein GAN Code accompanying the paper "Wasserstein GAN" A few notes The first time running on the LSUN dataset it can take a long time (up to an

3.1k Jan 01, 2023
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
ColBERT: Contextualized Late Interaction over BERT (SIGIR'20)

Update: if you're looking for ColBERTv2 code, you can find it alongside a new simpler API, in the branch new_api. ColBERT ColBERT is a fast and accura

Stanford Future Data Systems 637 Jan 08, 2023
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.

Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy

emmanuel 47 Nov 06, 2022
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
A Simplied Framework of GAN Inversion

Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams

Kangneng Zhou 13 Sep 27, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
Official Pytorch implementation for "End2End Occluded Face Recognition by Masking Corrupted Features, TPAMI 2021"

End2End Occluded Face Recognition by Masking Corrupted Features This is the Pytorch implementation of our TPAMI 2021 paper End2End Occluded Face Recog

Haibo Qiu 25 Oct 31, 2022
Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.

Minesweeper-AI Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweep

Beckham 0 Jul 20, 2022
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch

pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 269 Jan 02, 2023
This is an official implementation of "Polarized Self-Attention: Towards High-quality Pixel-wise Regression"

Polarized Self-Attention: Towards High-quality Pixel-wise Regression This is an official implementation of: Huajun Liu, Fuqiang Liu, Xinyi Fan and Don

DeLightCMU 212 Jan 08, 2023