Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Overview

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

The skip connections in U-Net pass features from the levels of encoder to the ones of decoder in a symmetrical way, which makes U-Net and its variants become state-of-the-art approaches for biomedical image segmentation. However, the U-Net skip connections are unidirectional without considering feedback from the decoder, which may be used to further improve the segmentation performance. In this paper, we exploit the feedback information to recurrently refine the segmentation. We develop a deep bidirectional network based on the least mean square error reconstruction (Lmser) self-organizing network, an early network by folding the autoencoder along the central hidden layer. Such folding makes the neurons on the paired layers between encoder and decoder merge into one, equivalently forming bidirectional skip connections between encoder and decoder. We find that although the feedback links increase the segmentation accuracy, they may bring noise into the segmentation when the network proceeds recurrently. To tackle this issue, we present a gating and masking mechanism on the feedback connections to filter the irrelevant information. Experimental results on MoNuSeg, TNBC, and EM membrane datasets demonstrate that our method are robust and outperforms state-of-the-art methods.

This repository holds the Python implementation of the method described in the paper published in BIBM 2021.

Boheng Cao, Shikui Tu*, Lei Xu, "Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation", BIBM2021

Content

  1. Structure
  2. Requirements
  3. Data
  4. Training
  5. Testing
  6. Acknowledgement

Structure

--checkpoints

# pretrained models

--data

# data for MoNuSeg, TNBC, and EM

--pytorch_version

# code

Requirements

  • Python 3.6 or higher.
  • PIL >= 7.0.0
  • matplotlib >= 3.3.1
  • tqdm >= 4.54.1
  • imgaug >= 0.4.0
  • torch >= 1.5.0
  • torchvision >= 0.6.0

...

Data

The author of BiONet has already gathered data of three datasets (Including EM https://bionets.github.io/Piriform_data.zip).

Please refer to the official website (or project repo) for license and terms of usage.

MoNuSeg: https://monuseg.grand-challenge.org/Data/

TNBC: https://github.com/PeterJackNaylor/DRFNS

We also provide our data (For EM only includes stack 1 and 4) and pretrained models here: https://pan.baidu.com/s/1pHTexUIS8ganD_BwbWoAXA password:sjtu

or

https://drive.google.com/drive/folders/1GJq-AV1L1UNhI2WNMDuynYyGtOYpjQEi?usp=sharing

Training

As an example, for EM segmentation, you can simply run:

python main.py --train_data ./data/EM/train --valid_data ./data/EM/test --exp EM_1 --alpha=0.4

Some of the available arguments are:

Argument Description Default Type
--epochs Training epochs 300 int
--batch_size Batch size 2 int
--steps Steps per epoch 250 int
--lr Learning rate 0.01 float
--lr_decay Learning rate decay 3e-5 float
--iter recurrent iteration 3 int
--train_data Training data path ./data/monuseg/train str
--valid_data Validating data path ./data/monuseg/test str
--valid_dataset Validating dataset type monuseg str
--exp Experiment name(use the same name when testing) 1 str
--evaluate_only If only evaluate using existing model store_true action
--alpha Weight of skip/backward connection 0.4 float

Testing

For MonuSeg and TNBC, you can just use our code to test the model, for example

python main.py --valid_data ./data/tnbc --valid_dataset tnbc --exp your_experiment_id --alpha=0.4 --evaluate_only

For EM, our code can not give the Rand F-score directly, but our code will save the ground truth and result in /checkpoints/your_experiment_id/outputs, you can use the tool ImageJ and code of http://brainiac2.mit.edu/isbi_challenge/evaluation to get Rand F-score.

Acknowledgement

This project would not have been finished without using the codes or files from the following open source projects:

BiONet

Reference

Please cite our work if you find our code/paper is useful to your work.

tbd
Owner
Boheng Cao
SJTU CS
Boheng Cao
Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
Learned model to estimate number of distinct values (NDV) of a population using a small sample.

Learned NDV estimator Learned model to estimate number of distinct values (NDV) of a population using a small sample. The model approximates the maxim

2 Nov 21, 2022
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download

Bubbliiiing 31 Nov 25, 2022
Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al.

nam-pytorch Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al. [abs, pdf] Installation You can access nam-pytorch vi

Rishabh Anand 11 Mar 14, 2022
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"

NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise

57 Oct 03, 2022
An addon uses SMPL's poses and global translation to drive cartoon character in Blender.

Blender addon for driving character The addon drives the cartoon character by passing SMPL's poses and global translation into model's armature in Ble

犹在镜中 153 Dec 14, 2022
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

5 Dec 10, 2022
Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021.

Conformal time-series forecasting Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021. If you use our code in yo

Kamilė Stankevičiūtė 36 Nov 21, 2022
Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

75 Nov 24, 2022
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
A framework to train language models to learn invariant representations.

Invariant Language Modeling Implementation of the training for invariant language models. Motivation Modern pretrained language models are critical co

6 Nov 16, 2022
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Dangers of Bayesian Model Averaging under Covariate Shift This repository contains the code to reproduce the experiments in the paper Dangers of Bayes

Pavel Izmailov 25 Sep 21, 2022
Pytorch Lightning 1.2k Jan 06, 2023