Conversion between units used in magnetism

Overview

PyPI Version Supported Python Versions

convmag

Conversion between various units used in magnetism

The conversions between base units available are:

         T  <->  G         :    1e4
         T  <->  Oe        :    1e4
       A/m  <->  T         :    MU_0
       A/m  <->  G         :    1e4 * MU_0
         G  <->  Oe        :    1
       A/m  <->  Oe        :    1e4 * MU_0
  emu/cm^3  <->  T         :    1e3 * MU_0
erg/Oecm^3  <->  A/m       :    1e3
     emu/g  <->  Am^2/kg   :    1
     J/m^3  <->  GOe       :    1e8 * MU_0
     J/m^3  <->  erg/cm^3  :    1e1
  erg/cm^3  <->  GOe       :    1e7 * MU_0
      Am^2  <->  emu       :    1e3
      Am^2  <->  erg/G     :    1e3
      Am^2  <->  erg/Oe    :    1e3
       emu  <->  erg/G     :    1
       muB  <->  Am^2      :    MU_B
       muB  <->  emu       :    1e3 * MU_B
    muB/fu  <->  T         :    requires user input of lattice parameters

(the factors given above are for the forward conversion)

  • permeability of free space, MU_0 = 4 * 3.14159 * 1e-7 H/m (== Vs/Am)

  • Bohr magneton, MU_B = 9.274015e-24 Am^2 (muB is the unit string for conversions with Bohr magnetons)

The prefactors available for any base unit are: M (1e6), k (1e3), m (1e-3), ยต (1e-6)

You can combine prefactors and base units to give e.g. MA/m or kJ/m^3


Installation:

Pip

You can install the current release (0.0.3) with pip:

    pip install convmag

Usage options:

  1. a console script is provided and should be located in the Scripts directory of your Python distribution after installation. If you have this directory in your Path (environment variable on Windows) you can start the program by typing "convmag" in the console. In this case only single values can be converted (at one time).

  2. the package can be imported into python and then you can pass numpy arrays into the function convert_unit(), making sure to keep the default verbose=False. That way many values can be converted at once. The converted values are returned as a numpy array for further processing.

    >>> import numpy as np
    >>> import convmag as cm
    
    >>> vals_in_T = np.arange(0,130,20)
    
    >>> vals_in_T
    array([  0,  20,  40,  60,  80, 100, 120])
   
    >>> vals_in_Oe = cm.convert_unit(vals_in_T, "T", "Oe", verbose=False)
    
    >>> vals_in_Oe
    array([      0.,  200000.,  400000.,  600000.,  800000., 1000000., 1200000.])

Pure python, no other dependencies.

Requires Python >= 3.6 because f-strings are used

You might also like...
Implementation of Kaneko et al.'s MaskCycleGAN-VC model for non-parallel voice conversion.
Implementation of Kaneko et al.'s MaskCycleGAN-VC model for non-parallel voice conversion.

MaskCycleGAN-VC Unofficial PyTorch implementation of Kaneko et al.'s MaskCycleGAN-VC (2021) for non-parallel voice conversion. MaskCycleGAN-VC is the

Official implementation of
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC)

ppg-vc Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC) This repo implements different kinds of PPG-based VC models. Pretrained models. More m

Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion

StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion Yinghao Aaron Li, Ali Zare, Nima Mesgarani We pres

[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 EAMLP will come soon Jitto

MenghaoGuo 357 Dec 11, 2022
Text to image synthesis using thought vectors

Text To Image Synthesis Using Thought Vectors This is an experimental tensorflow implementation of synthesizing images from captions using Skip Though

Paarth Neekhara 2.1k Jan 05, 2023
DL course co-developed by YSDA, HSE and Skoltech

Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec

Yandex School of Data Analysis 1.3k Dec 30, 2022
SpinalNet: Deep Neural Network with Gradual Input

SpinalNet: Deep Neural Network with Gradual Input This repository contains scripts for training different variations of the SpinalNet and its counterp

H M Dipu Kabir 142 Dec 30, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara 898 Jan 07, 2023
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023
Enigma-Plus - Python based Enigma machine simulator with some extra features

Enigma-Plus Python based Enigma machine simulator with some extra features Examp

1 Jan 05, 2022
Everything's Talkin': Pareidolia Face Reenactment (CVPR2021)

Everything's Talkin': Pareidolia Face Reenactment (CVPR2021) Linsen Song, Wayne Wu, Chaoyou Fu, Chen Qian, Chen Change Loy, and Ran He [Paper], [Video

71 Dec 21, 2022
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0

32 Nov 27, 2022
Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Giannis Nikolentzos 7 Jul 10, 2022
Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

OFA Sys 1.4k Jan 08, 2023
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
[ACMMM 2021, Oral] Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception"

EIP: Elastic Interaction of Particles Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception", in ACMMM (Oral) 2021. By Yikai

Yikai Wang 37 Dec 20, 2022
BED: A Real-Time Object Detection System for Edge Devices

BED: A Real-Time Object Detection System for Edge Devices About this project Thi

Data Analytics Lab at Texas A&M University 44 Nov 18, 2022
FwordCTF 2021 Infrastructure and Source code of Web/Bash challenges

FwordCTF 2021 You can find here the source code of the challenges I wrote (Web and Bash) in FwordCTF 2021 and the source code of the platform with our

Kahla 5 Nov 25, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022