Classifies galaxy morphology with Bayesian CNN

Related tags

Deep Learningzoobot
Overview

Zoobot

Documentation Status

Zoobot classifies galaxy morphology with deep learning. This code will let you:

  • Reproduce and improve the Galaxy Zoo DECaLS automated classifications
  • Finetune the classifier for new tasks

For example, you can train a new classifier like so:

model = define_model.get_model(
    output_dim=len(schema.label_cols),  # schema defines the questions and answers
    input_size=initial_size, 
    crop_size=int(initial_size * 0.75),
    resize_size=resize_size
)

model.compile(
    loss=losses.get_multiquestion_loss(schema.question_index_groups),
    optimizer=tf.keras.optimizers.Adam()
)

training_config.train_estimator(
    model, 
    train_config,  # parameters for how to train e.g. epochs, patience
    train_dataset,
    test_dataset
)

Install using git and pip: git clone [email protected]:mwalmsley/zoobot.git pip install -r zoobot/requirements.txt (virtual env or conda highly recommended) pip install -e zoobot The main branch is for stable-ish releases. The dev branch includes the shiniest features but may change at any time.

To get started, see the documentation.

I also include some working examples for you to copy and adapt:

Latest cool features on dev branch (June 2021):

  • Multi-GPU distributed training
  • Support for Weights and Biases (wandb)
  • Worked examples for custom representations

Contributions are welcome and will be credited in any future work.

If you use this repo for your research, please cite the paper.

Comments
  • Benchmarks

    Benchmarks

    It's important that Zoobot has proper benchmarks so that we can be confident new releases work properly for users. This PR adds those benchmarks.

    In the course of setting up the benchmarks, I have made some major changes/improvements:

    • pytorch-galaxy-datasets refactored to work for tensorflow, imports adapted
    • both tensorflow and pytorch zoobot versions use albumentations for augmentations. Old TF code removed.
    • tensorflow version bumped to 2.10 (current latest) while I'm at it
    • pytorch version now has logging for per-question loss. Loss func aggregation has new option to support this.
    • TensorFlow version has per-question logging also, but awaiting issue with Keras team to enable
    • Created minimal_example.py for TensorFlow (thanks, @katgre )
    • Support CPU-only PyTorch training
    • Refactor TF TrainingConfig to Trainer object, Lightning style, for consistency
    enhancement 
    opened by mwalmsley 3
  • on_train_batch_end is slow in TF

    on_train_batch_end is slow in TF

    Unclear what's causing this slowness. Presumably a callback I added - but none look like they should be heavy? Perhaps something wandb is doing?

    • Remove all callbacks and rerun
    • Remove wandb and rerun For each, check if slow warning continues (or if training speed changes at all)
    enhancement 
    opened by mwalmsley 3
  • add gh action to publish package to pypi

    add gh action to publish package to pypi

    Related to https://github.com/mwalmsley/zoobot/issues/18#issuecomment-1278635788

    This PR adds an auto CI release mechanism for publishing zoobot to pypi. It uses the GH action to release to pypi https://github.com/pypa/gh-action-pypi-publish

    opened by camallen 3
  • Publish latest version to PyPi?

    Publish latest version to PyPi?

    A question rather than a request. Are there any plans to publish the refactored work ?

    PyPi shows v0.0.1 is published https://pypi.org/project/zoobot/#history on 15th March 2021 but the latest code is ~v0.0.3 (tags) and the refactor seems to be working well.

    Ideally I can pull in these packages to my own env / container and then train with the latest code vs pulling in from github etc.

    opened by camallen 3
  • setup branch protection rules on 'main'

    setup branch protection rules on 'main'

    https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/defining-the-mergeability-of-pull-requests/managing-a-branch-protection-rule

    It may be too restrictive for your use case / dev flows but we use this for contributor PRs etc. Basically we ensure that a PR meets certain criteria in terms of our CI runs, can only merge a PR once one of the CI runs v3.7 or v3.9 tests pass.

    Feel free to close if you don't think this is useful.

    enhancement 
    opened by camallen 2
  • Deprecate TFRecords

    Deprecate TFRecords

    TFRecords are cumbersome and take up a lot of disk space. It's much simpler to learn directly from images on disk, at the cost of some I/O performance.

    This PR removes support for TFRecords in favour of images-on-disk. This will ultimately enable new TensorFlow weights trained on all of DESI (impractical with TFRecords).

    Breaking change for anyone using TFRecords (i.e. everyone using TensorFlow to train from scratch). Finetuning should not be affected.

    TODO - will require new greyscale/colour pretrained models, just for safety.

    opened by mwalmsley 2
  • feat(CI): Add proposed python CI GH Action

    feat(CI): Add proposed python CI GH Action

    This PR proposes to add a simple GH Action script that establishes a python environment, downloads the requirements and runs pytest.

    Some other things to consider might be to use conda for virtual environments and creating CI scripts for Docker as well.

    opened by SauravMaheshkar 2
  • Improve data files for docker

    Improve data files for docker

    This PR changes the docker / compose setup, specifically it

    • consolidates the docker files to cuda and tensorflow base images (no need for a python base image)
    • adds a .dockerignore entry for all data files when building the container to keep the size down
    • and provides an easy way to inject them at run time via local directory mounts in the compose file
    • finally this removes specific to my machine local directory setup for injecting unrelated data files
    opened by camallen 2
  • add wandb logging, freeze batchnorm by default

    add wandb logging, freeze batchnorm by default

    Doing some polishing on finetuning

    • Add wandb logging to the full_tree example. @camallen use this for dashboard. You will need to add import wandb, wandb.init(authkey, etc) just before when running on Azure.
    • Freeze batch norm layers by default when finetuning, with new recursive function
    • Pass additional params via config (thanks Cam)
    • Minor cleanup
    opened by mwalmsley 1
  • Add PyTorch Finetuning Capability, Examples

    Add PyTorch Finetuning Capability, Examples

    Key change is adding pytorch.training.finetune() method. Works on either classification (e.g. 0, 1) data or count (e.g. 12 said yes, 4 said no) data.

    Includes three working examples:

    • Binary classification, with tiny rings subset
    • Counts for single question, with full internal rings data
    • Counts for all questions, with GZ Cosmic Dawn schema

    Also updates various imports for the galaxy-datasets refactor, fixes prediction method to work on unlabelled data, minor QoL improvements.

    Finally, changes PyTorch dense layer initialisation to custom high-uncertainty initialisation - see efficientnet_custom.py

    cc @camallen

    opened by mwalmsley 1
  • Add v0.02 changes

    Add v0.02 changes

    Adds support (minimal working examples, a guide) for calculating new representations with a trained model.

    Also adds significant new features:

    • Distributed training with several GPUs
    • Metric logging with Weights&Biases (add your own login credentials)
    • Train on color (3-band) images, not just greyscale

    Also adds a critical bugfix (when loading images for direct predictions i.e. not via TFRecords, correctly normalise to the 0-1 interval expected (without documentation) by the tf.keras.experimental.preprocessing layers).

    Also adds misc. minor fixes and documentation tweaks.

    This code was used for the morphology tools paper (to be submitted shortly).

    opened by mwalmsley 1
  • Avoid --extra-index-url via dependency_links

    Avoid --extra-index-url via dependency_links

    It should be possible to search for non-standard package repositories using just setup.py, without having the user also set --extra-index-url.

    https://setuptools.pypa.io/en/latest/deprecated/dependency_links.html

    But I couldn't get this to work on a quick try.

    enhancement help wanted 
    opened by mwalmsley 1
  • Can't import finetune while going through finetune_binary_classification.py

    Can't import finetune while going through finetune_binary_classification.py

    I tried to go through finetune_binary_classification.py, but got the error:

    ImportError: cannot import name 'finetune' from 'zoobot.pytorch.training' (/usr/local/lib/python3.8/dist-packages/zoobot/pytorch/training/init.py)

    I tried it both with kasia and dev branch, went through "git clone" and "pip install" (I remembered there were some issues during Hackaton regarding that), also tried to import other features from the folder (i.e. losses) and it worked fine.

    bug 
    opened by katgre 2
  • Create a simple decision tree in minimal_example.py

    Create a simple decision tree in minimal_example.py

    Instead of using on of the complicated decision trees from decals dr5, let's create a simple decision tree with one dependency already written in the minimal_example.py.

    opened by katgre 0
Releases(v0.0.3)
  • v0.0.3(Apr 25, 2022)

    Improved documentation and refactored train API (pytorch).

    Awaiting results from several segmentation experiments ahead of public release (inc pytorch version).

    Source code(tar.gz)
    Source code(zip)
  • v0.0.2(Oct 4, 2021)

  • beta(Sep 29, 2021)

    Initial release.

    This had enough documentation and code to replicate the DECaLS model and make predictions. There are a few minor missing arguments and similar typos that you might have stumbled into, because I made some last minute changes without updating the docs, but everything worked with a little stack tracing.

    Source code(tar.gz)
    Source code(zip)
Owner
Mike Walmsley
Mike Walmsley
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
A tensorflow implementation of GCN-LPA

GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur

Hongwei Wang 83 Nov 28, 2022
Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library.

SymEngine Python Wrappers Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library. Installation Pip See License section

136 Dec 28, 2022
(CVPR2021) DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation

DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation CVPR2021(oral) [arxiv] Requirements python3.7 pytorch==

W-zx-Y 85 Dec 07, 2022
SCNet: Learning Semantic Correspondence

SCNet Code Region matching code is contributed by Kai Han ([email protected]). Dense

Kai Han 34 Sep 06, 2022
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu

Rishit Dagli 32 Feb 21, 2022
This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Models used for prediction Diabetes and further the basic theory and working of Gold nanoparticles.

GoldNanoparticles This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Mode

1 Jan 30, 2022
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Benedek Rozemberczki 697 Dec 27, 2022
MLJetReconstruction - using machine learning to reconstruct jets for CMS

MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.

ALPhA Davidson 0 Nov 17, 2021
Modular Gaussian Processes

Modular Gaussian Processes for Transfer Learning 🧩 Introduction This repository contains the implementation of our paper Modular Gaussian Processes f

Pablo Moreno-Muñoz 10 Mar 15, 2022
null

DeformingThings4D dataset Video | Paper DeformingThings4D is an synthetic dataset containing 1,972 animation sequences spanning 31 categories of human

208 Jan 03, 2023
Code implementation from my Medium blog post: [Transformers from Scratch in PyTorch]

transformer-from-scratch Code for my Medium blog post: Transformers from Scratch in PyTorch Note: This Transformer code does not include masked attent

Frank Odom 27 Dec 21, 2022
Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM)

Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM) Introduction The average lifetime of the $D^{0}$ me

Son Gyo Jung 1 Dec 17, 2021
Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.

Semi-supervised-learning-for-medical-image-segmentation. Recently, semi-supervised image segmentation has become a hot topic in medical image computin

Healthcare Intelligence Laboratory 1.3k Jan 03, 2023
A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon.

PokeGAN A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon. Dataset The model has been trained on dataset that includes 8

19 Jul 26, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
Convolutional Neural Networks

Darknet Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation. D

Joseph Redmon 23.7k Jan 05, 2023
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
Codebase for the Summary Loop paper at ACL2020

Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training

Canny Lab @ The University of California, Berkeley 44 Nov 04, 2022