Improving Compound Activity Classification via Deep Transfer and Representation Learning

Overview

Improving Compound Activity Classification via Deep Transfer and Representation Learning

This repository is the official implementation of Improving Compound Activity Classification via Deep Transfer and Representation Learning.

Requirements

Operating systems: Red Hat Enterprise Linux Server 7.9

To install requirements:

pip install -r requirements.txt

Installation guide

Download the code and dataset with the command:

git clone https://github.com/ninglab/TransferAct.git

Data Processing

1. Use provided processed dataset

One can use our provided processed dataset in ./data/pairs/: the dataset of pairs of processed balanced assays $\mathcal{P}$ . Check the details of bioassay selection, processing, and assay pair selection in our paper in Section 5.1.1 and Section 5.1.2, respectively. We provided our dataset of pairs as data/pairs.tar.gz compressed file. Please use tar to de-compress it.

2. Use own dataset

We provide necessary scripts in ./data/scripts/ with the processing steps in ./data/scripts/README.md.

Training

1. Running TAc

  • To run TAc-dmpn,
python code/train_aada.py --source_data_path <source_assay_csv_file> --target_data_path <target_assay_csv_file> --dataset_type classification --extra_metrics prc-auc precision recall accuracy f1_score --hidden_size 25 --depth 4 --init_lr 1e-3 --batch_size 10 --ffn_hidden_size 100 --ffn_num_layers 2 --epochs 40 --alpha 1 --lamda 0 --split_type index_predetermined --crossval_index_file <index_file> --save_dir <chkpt_dir> --class_balance --mpn_shared
  • To run TAc-dmpna, add these arguments to the above command
--attn_dim 100 --aggregation self-attention --model aada_attention

source_data_path and target_data_path specify the path to the source and target assay CSV files of the pair, respectively. First line contains a header smiles,target. Each of the following lines are comma-separated with the SMILES in the 1st column and the 0/1 label in the 2nd column.

dataset_type specifies the type of task; always classification for this project.

extra_metrics specifies the list of evaluation metrics.

hidden_size specifies the dimension of the learned compound representation out of GNN-based feature generators.

depth specifies the number of message passing steps.

init_lr specifies the initial learning rate.

batch_size specifies the batch size.

ffn_hidden_size and ffn_num_layers specify the number of hidden units and layers, respectively, in the fully connected network used as the classifier.

epochs specifies the total number of epochs.

split_type specifies the type of data split.

crossval_index_file specifies the path to the index file which contains the indices of data points for train, validation and test split for each fold.

save_dir specifies the directory where the model, evaluation scores and predictions will be saved.

class_balance indicates whether to use class-balanced batches during training.

model specifies which model to use.

aggregation specifies which pooling mechanism to use to get the compound representation from the atom representations. Default set to mean: the atom-level representations from the message passing network are averaged over all atoms of a compound to yield the compound representation.

attn_dim specifies the dimension of the hidden layer in the 2-layer fully connected network used as the attention network.

Use python code/train_aada.py -h to check the meaning and default values of other parameters.

2. Running TAc-fc variants and ablations

  • To run Tac-fc,
python code/train_aada.py --source_data_path <source_assay_csv_file> --target_data_path <target_assay_csv_file> --dataset_type classification --extra_metrics prc-auc precision recall accuracy f1_score --hidden_size 25 --depth 4 --init_lr 1e-3 --batch_size 10 --ffn_hidden_size 100 --ffn_num_layers 2 --local_discriminator_hidden_size 100 --local_discriminator_num_layers 2 --global_discriminator_hidden_size 100 --global_discriminator_num_layers 2 --epochs 40 --alpha 1 --lamda 1 --split_type index_predetermined --crossval_index_file <index_file> --save_dir <chkpt_dir> --class_balance --mpn_shared
  • To run TAc-fc-dmpna, add these arguments to the above command
--attn_dim 100 --aggregation self-attention --model aada_attention
Ablations
  • To run TAc-f, add --exclude_global to the above command.
  • To run TAc-c, add --exclude_local to the above command.
  • Adding both --exclude_local and --exclude_global is equivalent to running TAc.

3. Running Baselines

DANN

python code/train_aada.py --source_data_path <source_assay_csv_file> --target_data_path <target_assay_csv_file> --dataset_type classification --extra_metrics prc-auc precision recall accuracy f1_score --hidden_size 25 --depth 4 --init_lr 1e-3 --batch_size 10 --ffn_hidden_size 100 --ffn_num_layers 2 --global_discriminator_hidden_size 100 --global_discriminator_num_layers 2 --epochs 40 --alpha 1 --lamda 1 --split_type index_predetermined --crossval_index_file <index_file> --save_dir <chkpt_dir> --class_balance --mpn_shared
  • To run DANN-dmpn, add --model dann to the above command.
  • To run DANN-dmpna, add --model dann_attention --attn_dim 100 --aggregation self-attention --model to the above command.

Run the following baselines from chemprop as follows:

FCN-morgan

python chemprop/train.py --data_path <assay_csv_file> --dataset_type classification --extra_metrics prc-auc precision recall accuracy f1_score --init_lr 1e-3 --batch_size 10 --ffn_hidden_size 100 --ffn_num_layers 2 --epochs 40 --features_generator morgan --features_only --split_type index_predetermined --crossval_index_file <index_file> --save_dir <chkpt_dir> --class_balance

FCN-morganc

python chemprop/train.py --data_path <assay_csv_file> --dataset_type classification --extra_metrics prc-auc precision recall accuracy f1_score --init_lr 1e-3 --batch_size 10 --ffn_hidden_size 100 --ffn_num_layers 2 --epochs 40 --features_generator morgan_count --features_only --split_type index_predetermined --crossval_index_file <index_file> --save_dir <chkpt_dir> --class_balance

FCN-dmpn

python chemprop/train.py --data_path <assay_csv_file> --dataset_type classification --extra_metrics prc-auc precision recall accuracy f1_score --hidden_size 25 --depth 4 --init_lr 1e-3 --batch_size 10 --ffn_hidden_size 100 --ffn_num_layers 2 --epochs 40 --split_type index_predetermined --crossval_index_file <index_file> --save_dir <chkpt_dir> --class_balance

FCN-dmpna

Add the following to the above command:

--model mpnn_attention --attn_dim 100 --aggregation self-attention

For the above baselines, data_path specifies the path to the target assay CSV file.

FCN-dmpn(DT)

python chemprop/train.py --data_path <source_assay_csv_file> --target_data_path <target_assay_csv_file> --dataset_type classification --extra_metrics prc-auc precision recall accuracy f1_score  --hidden_size 25 --depth 4 --init_lr 1e-3 --batch_size 10 --ffn_hidden_size 100 --ffn_num_layers 2 --epochs 40 --split_type index_predetermined --crossval_index_file <index_file> --save_dir <chkpt_dir> --class_balance

FCN-dmpna(DT)

--model mpnn_attention --attn_dim 100 --aggregation self-attention

For FCN-dmpn(DT)and FCN-dmpna(DT), data_path and target_data_path specify the path to the source and target assay CSV files.

Use python chemprop/train.py -h to check the meaning of other parameters.

Testing

  1. To predict the labels of the compounds in the test set for Tac*, DANN methods:

    python code/predict.py --test_path <test_csv_file> --checkpoint_dir <chkpt_dir> --preds_path <pred_file>

    test_path specifies the path to a CSV file containing a list of SMILES and ground-truth labels. First line contains a header smiles,target. Each of the following lines are comma-separated with the SMILES in the 1st column and the 0/1 label in the 2nd column.

    checkpoint_dir specifies the path to the checkpoint directory where the model checkpoint(s) .pt filles are saved (i.e., save_dir during training).

    preds_path specifies the path to a CSV file where the predictions will be saved.

  2. To predict the labels of the compounds in the test set for other methods:

    python chemprop/predict.py --test_path <test_csv_file> --checkpoint_dir <chkpt_dir> --preds_path <pred_file>
    

Compound Prioritization using dmpna:

Please refer to the README.md in the comprank directory.

Owner
NingLab
NingLab
A module that used for encrypt code which includes RSA and AES

软件加密模块 requirement: Crypto,pycryptodome,pyqt5 本地加密信息为随机字符串 使用说明 命令行参数 -h 帮助 -checkWorking 检查是否能正常工作,后接1确认指令 -checkEndDate 检查截至日期,后接1确认指令 -activateCode

2 Sep 27, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
Rendering color and depth images for ShapeNet models.

Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas

Yinyu Nie 41 Dec 19, 2022
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
Unified MultiWOZ evaluation scripts for the context-to-response task.

MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval

Tomáš Nekvinda 38 Dec 13, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
Pytorch code for our paper "Feedback Network for Image Super-Resolution" (CVPR2019)

Feedback Network for Image Super-Resolution [arXiv] [CVF] [Poster] Update: Our proposed Gated Multiple Feedback Network (GMFN) will appear in BMVC2019

Zhen Li 539 Jan 06, 2023
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis

Mehmet Kerim Yucel 5 Feb 04, 2022
Official Pytorch implementation of RePOSE (ICCV2021)

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link] Abstract We present RePOSE, a fast iterative refinement method fo

Shun Iwase 68 Nov 15, 2022
AdvStyle - Official PyTorch Implementation

AdvStyle - Official PyTorch Implementation Paper | Supp Discovering Interpretable Latent Space Directions of GANs Beyond Binary Attributes. Huiting Ya

Beryl 37 Oct 21, 2022
View model summaries in PyTorch!

torchinfo (formerly torch-summary) Torchinfo provides information complementary to what is provided by print(your_model) in PyTorch, similar to Tensor

Tyler Yep 1.5k Jan 05, 2023
Python SDK for building, training, and deploying ML models

Overview of Kubeflow Fairing Kubeflow Fairing is a Python package that streamlines the process of building, training, and deploying machine learning (

Kubeflow 325 Dec 13, 2022
PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids

PSML: A Multi-scale Time-series Dataset for Machine Learning in Decarbonized Energy Grids The electric grid is a key enabling infrastructure for the a

Texas A&M Engineering Research 19 Jan 07, 2023
(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

RDPNet IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation PyTorch training and testing code are available.

Yu-Huan Wu 41 Oct 21, 2022
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
Wafer Fault Detection using MlOps Integration

Wafer Fault Detection using MlOps Integration This is an end to end machine learning project with MlOps integration for predicting the quality of wafe

Sethu Sai Medamallela 0 Mar 11, 2022
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022
Code release for Universal Domain Adaptation(CVPR 2019)

Universal Domain Adaptation Code release for Universal Domain Adaptation(CVPR 2019) Requirements python 3.6+ PyTorch 1.0 pip install -r requirements.t

THUML @ Tsinghua University 229 Dec 23, 2022