This is the official repo for TransFill: Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations at CVPR'21. According to some product reasons, we are not planning to release the training/testing codes and models. However, we will release the dataset and the scripts to prepare the dataset.

Overview

TransFill-Reference-Inpainting

This is the official repo for TransFill: Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations (Yuqian Zhou, Connelly Barnes, Eli Shechtman, Sohrab Amirghodsi) at CVPR'21. According to some confidential reasons, we are not planning to release the training/testing codes and models. Online-demo will be public once we set up the server. However, we release the testing dataset for comparsion, and the scripts to prepare the training dataset.

[Paper] | [Project] | [Demo Video]

Introduction

Applications of TransFill: Photo Content Swap, Object Removal, Color Adjustment.

Image inpainting is the task of plausibly restoring missing pixels within a hole region that is to be removed from a target image. Most existing technologies exploit patch similarities within the image, or leverage large-scale training data to fill the hole using learned semantic and texture information. However, due to the ill-posed nature of the inpainting task, such methods struggle to complete larger holes containing complicated scenes. In this paper, we propose TransFill, a multi-homography transformed fusion method to fill the hole by referring to another source image that shares scene contents with the target image. We first align the source image to the target image by estimating multiple homographies guided by different depth levels. We then learn to adjust the color and apply a pixel-level warping to each homography-warped source image to make it more consistent with the target. Finally, a pixel-level fusion module is learned to selectively merge the different proposals. Our method achieves state-of-the-art performance on pairs of images across a variety of wide baselines and color differences, and generalizes to user-provided image pairs.

Download and Prepare RealEstate10K

We prepare the script of downloading and extracting paired frames from RealEstate10K. First, go to the RealEstate10K official website to download the .txt files. Then unzip it and put the folder into the data folder.

Run our script to download the video samples and extract paired frames with frame difference (stride) 10, 20 and 30.

python download_realestate10k.py \
--txt_dir ./data/RealEstate10K/train \
--out_dir ./RealEstate10K_frames/train \
--dataset_dir ./RealEstate10K_pair/train \
--sample_num 10

Choose the sample number to download limited number of samples (say 100 videos). You may need to install youtube-dl package or VPNs (in Mainland China) to download YouTube videos. Google also has some limitations of downloading amount, so I did not use multi-thread to increase the downloading speed on purpose. The process is fairly long, so I suggest downloading a subset of videos to extract samples first, and gradually extending it to download the whole dataset. Any other downloading issues, please inquire the original provider of RealEstate10K.

Download Testing Data

We shared the testing images in the paper, including the 'Small Set' containing 300 pairs of images from RealEstate10K, and a 'Real Set' containing 100+ challenging paired images from users. The data can be downloaded from the Google Drive.

To reproduce the results in the Table 1 of the paper, download and unzip the 'Small Set' into data folder, and run

python compute_metrics.py

The script will compare the images generated by TransFill with the ground truth images in the target folder, and return PSNR, SSIM and LPIPS score.

In the 'Real Set', ProFill and TransFill results are shared for the researchers to compare. Note that there are some failure cases within the folder, which shows the room for future works to improve TransFill.

Test on Your Own Data

We plan to set up the online demo server in the near future. But before we finish that, if you are really eager for a comparsion of the results for research purpose, feel free to send the testing data in the format of 'target', 'source', 'hole' folders to [email protected]. The resolution has better be smaller than 1K x 1K, otherwise we have to resize the image to avoid memory issues. To make fully use of the advantages of TransFill, we suggest the hole to be large enough by including more background contents of the target image.

We won't keep your data and will return the testing results to you within 2 working days.

Citation

If you think this repo and the manuscript helpful, please consider citing us.

@inproceedings{zhou2021transfill,
  title={TransFill: Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations},
  author={Zhou, Yuqian and Barnes, Connelly and Shechtman, Eli and Amirghodsi, Sohrab},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={2266--2276},
  year={2021}
}

Acknowledgements

This project is conducted when the author interned at Adobe Photoshop and Adobe Research.

Owner
Yuqian Zhou
Ph.D of Beckman Institute, UIUC Mphil of ECE in HKUST.
Yuqian Zhou
A micro-game "flappy bird".

1-o-flappy A micro-game "flappy bird". Gameplays The game will be installed at /usr/bin . The name of it is "1-o-flappy". You can type "1-o-flappy" to

1 Nov 06, 2021
The repository includes the code for training cell counting applications. (Keras + Tensorflow)

cell_counting_v2 The repository includes the code for training cell counting applications. (Keras + Tensorflow) Dataset can be downloaded here : http:

Weidi 113 Oct 06, 2022
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 03, 2022
A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
Pytorch-Swin-Unet-V2 - a modified version of Swin Unet based on Swin Transfomer V2

Swin Unet V2 Swin Unet V2 is a modified version of Swin Unet arxiv based on Swin

Chenxu Peng 26 Dec 03, 2022
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 07, 2022
Automatic 2D-to-3D Video Conversion with CNNs

Deep3D: Automatic 2D-to-3D Video Conversion with CNNs How To Run To run this code. Please install MXNet following the official document. Deep3D requir

Eric Junyuan Xie 1.2k Dec 30, 2022
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative

Tao Xu 1.2k Dec 26, 2022
DANA paper supplementary materials

DANA Supplements This repository stores the data, results, and R scripts to generate these reuslts and figures for the corresponding paper Depth Norma

0 Dec 17, 2021
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022
UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Unified Multi-modal Transformers This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Vi

Applied Research Center (ARC), Tencent PCG 84 Jan 04, 2023
A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
Manipulation OpenAI Gym environments to simulate robots at the STARS lab

Manipulator Learning This repository contains a set of manipulation environments that are compatible with OpenAI Gym and simulated in pybullet. In par

STARS Laboratory 5 Dec 08, 2022
Class-Attentive Diffusion Network for Semi-Supervised Classification [AAAI'21] (official implementation)

Class-Attentive Diffusion Network for Semi-Supervised Classification Official Implementation of AAAI 2021 paper Class-Attentive Diffusion Network for

Jongin Lim 7 Sep 20, 2022
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
High-fidelity 3D Model Compression based on Key Spheres

High-fidelity 3D Model Compression based on Key Spheres This repository contains the implementation of the paper: Yuanzhan Li, Yuqi Liu, Yujie Lu, Siy

5 Oct 11, 2022
A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial.

Streamlit Demo: Deep Dream A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial How to run this de

Streamlit 11 Dec 12, 2022
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
Extremely easy multi instancing software for minecraft speedrunning.

Easy Multi Extremely easy multi/single instancing software for minecraft speedrunning. A couple of goals of this project: Setup multi in minutes No fi

Duncan 8 Jul 16, 2022