Some useful extensions for Matplotlib.

Overview

mplx

Some useful extensions for Matplotlib.

PyPi Version PyPI pyversions GitHub stars Downloads

gh-actions codecov LGTM Code style: black

Contour plots for functions with discontinuities

plt.contour mplx.contour(max_jump=1.0)

Matplotlib has problems with contour plots of functions that have discontinuities. The software has no way to tell discontinuities and very sharp, but continuous cliffs apart, and contour lines will be drawn along the discontinuity.

mplx improves upon this by adding the parameter max_jump. If the difference between two function values in the grid is larger than max_jump, a discontinuity is assumed and no line is drawn. Similarly, min_jump can be used to highlight the discontinuity.

As an example, take the function imag(log(Z)) for complex values Z. Matplotlib's contour lines along the negative real axis are wrong.

import matplotlib.pyplot as plt
import numpy as np

import mplx

x = np.linspace(-2.0, 2.0, 100)
y = np.linspace(-2.0, 2.0, 100)

X, Y = np.meshgrid(x, y)
Z = X + 1j * Y

vals = np.imag(np.log(Z))

# plt.contour(X, Y, vals, levels=[-2.0, -1.0, 0.0, 1.0, 2.0])  # draws wrong lines
mplx.contour(X, Y, vals, levels=[-2.0, -1.0, 0.0, 1.0, 2.0], max_jump=1.0)
mplx.contour(X, Y, vals, levels=[0.0], min_jump=1.0, linestyles=":")

plt.gca().set_aspect("equal")
plt.show()

Relevant discussions:

License

This software is published under the MIT license.

Comments
  • Remove some typing hint to support older numpy ?

    Remove some typing hint to support older numpy ?

    Hello, I got an error ModuleNotFoundError: No module named 'numpy.typing' due to the typing hint from numpy.typing import ArrayLike.

    Would you mind remove this hint to support older numpy version like 1.19.* ? It seems no performance issue after remove it.

    opened by ProV1denCEX 5
  • Support for horizontal barchart

    Support for horizontal barchart

    This PR solves #30 by adding an alignment argument to show_bar_values defaulting to "vertical".

    I couldn't think of a robust way of determining the alignment automatically. Checking if the width of the bar is greater or lower than its height seemed a bit dodgy in some cases... I don't know. What do you think @nschloe ?

    Usage (adapted from README demo):

    import matplotlib.pyplot as plt
    import matplotx
    
    labels = ["Australia", "Brazil", "China", "Germany", "Mexico", "United\nStates"]
    vals = [21.65, 24.5, 6.95, 8.40, 21.00, 8.55]
    ypos = range(len(vals))
    
    
    with plt.style.context(matplotx.styles.dufte_bar):
        plt.barh(ypos, vals)
        plt.yticks(ypos, labels)
        matplotx.show_bar_values("{:.2f}", alignment="horizontal")
        plt.title("average temperature [°C]")
        plt.tight_layout()
        plt.show()
    

    Produces: Figure_1

    opened by RemDelaporteMathurin 3
  • Support for horizontal barchart

    Support for horizontal barchart

    matplotx.show_bar_values works perfectly with vertical bar charts but not with horizontal bar charts.

    These are often used with long text labels.

    import matplotlib.pyplot as plt
    import matplotx
    
    labels = ["Australia", "Brazil", "China", "Germany", "Mexico", "United\nStates"]
    vals = [21.65, 24.5, 6.95, 8.40, 21.00, 8.55]
    ypos = range(len(vals))
    
    with plt.style.context(matplotx.styles.dufte_bar):
        plt.barh(ypos, vals)
        plt.yticks(ypos, labels)
        matplotx.show_bar_values("{:.2f}")
        plt.title("average temperature [°C]")
        plt.tight_layout()
        plt.show()
    
    

    Produces: image

    I can write a PR and add a show_hbar_values() function that works with horizontal bar charts and produces: image

    Or it can also be an argument of matplotx.show_bar_value defaulting to "vertical" like show_bar_value(alignement="horizontal")

    What do you think @nschloe ?

    opened by RemDelaporteMathurin 2
  • Citation

    Citation

    Great package! Thank you so much it really helps!

    I will surely use this in my next paper/talk. How can I cite this package?

    Do you plan on adding a Zenodo DOI?

    Cheers Remi

    opened by RemDelaporteMathurin 2
  • Some styles are broken

    Some styles are broken

    Using the code example in the readme:

    import matplotlib.pyplot as plt
    import matplotx
    plt.style.use(matplotx.styles.ayu)
    

    I get this error:

    File ~/.conda/envs/.../lib/python3.10/site-packages/matplotlib/style/core.py:117, in use(style)
        115 for style in styles:
        116     if not isinstance(style, (str, Path)):
    --> 117         _apply_style(style)
        118     elif style == 'default':
        119         # Deprecation warnings were already handled when creating
        120         # rcParamsDefault, no need to reemit them here.
        121         with _api.suppress_matplotlib_deprecation_warning():
    
    File ~/.conda/envs/.../lib/python3.10/site-packages/matplotlib/style/core.py:62, in _apply_style(d, warn)
         61 def _apply_style(d, warn=True):
    ---> 62     mpl.rcParams.update(_remove_blacklisted_style_params(d, warn=warn))
    
    File ~/.conda/envs/.../lib/python3.10/_collections_abc.py:994, in MutableMapping.update(self, other, **kwds)
        992 if isinstance(other, Mapping):
        993     for key in other:
    --> 994         self[key] = other[key]
        995 elif hasattr(other, "keys"):
        996     for key in other.keys():
    
    File ~/.conda/envs/.../lib/python3.10/site-packages/matplotlib/__init__.py:649, in RcParams.__setitem__(self, key, val)
        647     dict.__setitem__(self, key, cval)
        648 except KeyError as err:
    --> 649     raise KeyError(
        650         f"{key} is not a valid rc parameter (see rcParams.keys() for "
        651         f"a list of valid parameters)") from err
    
    KeyError: 'dark is not a valid rc parameter (see rcParams.keys() for a list of valid parameters)'
    

    Lib versions:

    matplotlib-base           3.5.2           py310h5701ce4_1    conda-forge
    matplotx                  0.3.7                    pypi_0    pypi
    

    This happens with aura, ayu, github, gruvbox and others.

    Some of the themes working are: challenger_deep, dracula, dufte, nord, tab10

    opened by floringogianu 1
  • Support for subplots

    Support for subplots

    Related to the issue I opened. It seems that small changes already go quite a long way towards support for subplots. This does not yet work for the style.

    For the original code, everything was correctly calculated with the axes in mind, but then it was applied to plt instead of ax, even if an ax parameter was supplied for line_labels, it was still applied to plt.

    The code changes should have no effect when there are no subplots. When there are subplots, the code now offers better support.

    import matplotlib.pyplot as plt
    import matplotx
    import numpy as np
    
    # create data
    rng = np.random.default_rng(0)
    offsets = [1.0, 1.50, 1.60]
    labels = ["no balancing", "CRV-27", "CRV-27*"]
    names = ["Plot left", "Plot right"]
    x0 = np.linspace(0.0, 3.0, 100)
    y = [offset * x0 / (x0 + 1) + 0.1 * rng.random(len(x0)) for offset in offsets]
    
    fig, axes = plt.subplots(2,1)                                           
    
    for ax, name in zip(axes, names):                                                         
        with plt.style.context(matplotx.styles.dufte):
            for yy, label in zip(y, labels):
                ax.plot(x0, yy, label=label)                                
            ax.set_xlabel("distance [m]")                                   
        matplotx.ylabel_top(name)    
        matplotx.line_labels(ax=ax)
    

    Original code

    image

    New code

    image

    opened by mitchellvanzuijlen 1
  • dufte.legend allow plt.text kwargs

    dufte.legend allow plt.text kwargs

    To draw the legend dufte uses plt.text() https://github.com/nschloe/dufte/blob/main/src/dufte/main.py#L196

    plt.text() allows for additional kwargs to customize the text https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.text.html

    If possible, could you loop through the additional text kwargs to allow for a higher customizable legend?

    opened by exc4l 0
  • Improper ylabel_top placement

    Improper ylabel_top placement

    I've been using matplotx.ylabel_top and just noticed an issue with the label placement after setting the y tick labels explicitly. A working example is below.

    import numpy as np
    from seaborn import scatterplot
    import matplotx
    
    rng = np.random.default_rng(42)
    x = rng.random(100)
    y = -2*x + rng.normal(0, 0.5, 100)
    ax = scatterplot(
        x=x,
        y=y
    )
    ax.set_yticks([0, -1, -2])
    matplotx.ylabel_top('Example\nLabel')
    

    example

    i'm using

    numpy==1.23.4
    seaborn==0.12.1
    matplotx==0.3.10
    
    opened by markmbaum 0
  • First example images not properly clickable in readme

    First example images not properly clickable in readme

    I just came across this project, looks really neat. Especially the smooth contourf got me curious.

    I've noticed in the readme that (at least on firefox) if I click any of the three images, the link that opens (even with the "open image in new tab" context menu option) is https://github.com/nschloe/matplotx/blob/main/tests/dufte_comparison.py. In contrast, the contourf images open just fine, for instance.

    I assume the reason for this is the enclosing a tag for the first example: https://github.com/nschloe/matplotx/blob/c767b08ea91492b1db9626b8b2c8786b4bc99458/README.md?plain=1#L39

    In case this is not just a firefox thing, I would recommend trying to make the first three images clickable on their own right.

    opened by adeak 0
  • Adapt `line_labels` for `PolyCollections`

    Adapt `line_labels` for `PolyCollections`

    I'm keen on making a PR to adapt line_labels to make it work with fill_between objects (PolyCollection)

    This would be the usage and output:

    import matplotlib.pyplot as plt
    import matplotx
    import numpy as np
    
    x = np.linspace(0, 1)
    y1 = np.linspace(1, 2)
    y2 = np.linspace(2, 4)
    
    plt.fill_between(x, y1, label="label1")
    plt.fill_between(x, y1, y2, label="label1")
    
    matplotx.label_fillbetween()
    plt.show()
    

    image

    @nschloe would you be interested in this feature?

    opened by RemDelaporteMathurin 0
  • Support for subplots

    Support for subplots

    Perhaps this is already implemented and I'm just unable to find it. I think this package in general is great; very easy to use and very beautiful. Thank you for your time making it.

    I'm unable to get matplotx working properly when using subplots. Adapting the Clean line plots (dufte) example to include two subplots (side-by-side, or one-below-the-other) appears not to work.

    import matplotlib.pyplot as plt
    import matplotx
    import numpy as np
    
    # create data
    rng = np.random.default_rng(0)
    offsets = [1.0, 1.50, 1.60]
    labels = ["no balancing", "CRV-27", "CRV-27*"]
    x0 = np.linspace(0.0, 3.0, 100)
    y = [offset * x0 / (x0 + 1) + 0.1 * rng.random(len(x0)) for offset in offsets]
    
    fig, axes = plt.subplots(2,1)                                           # add subplots
    
    for ax in axes:                                                         # Let's make two identical subplots
        with plt.style.context(matplotx.styles.dufte):
            for yy, label in zip(y, labels):
                ax.plot(x0, yy, label=label)                                # changed plt. to ax.
            ax.set_xlabel("distance [m]")                                   # changed plt. to ax.
            matplotx.ylabel_top("voltage [V]")                              # move ylabel to the top, rotate
            matplotx.line_labels()                                          # line labels to the right
            #plt.show()                                                     # Including this adds the 'pretty axis' below the subplots.                             
    

    image

    opened by mitchellvanzuijlen 2
Releases(v0.3.10)
Owner
Nico Schlömer
Mathematics, numerical analysis, scientific computing, Python. Always interested in new problems.
Nico Schlömer
Minimal Ethereum fee data viewer for the terminal, contained in a single python script.

Minimal Ethereum fee data viewer for the terminal, contained in a single python script. Connects to your node and displays some metrics in real-time.

48 Dec 05, 2022
Python library that makes it easy for data scientists to create charts.

Chartify Chartify is a Python library that makes it easy for data scientists to create charts. Why use Chartify? Consistent input data format: Spend l

Spotify 3.2k Jan 04, 2023
Alternative layout visualizer for ZSA Moonlander keyboard

General info This is a keyboard layout visualizer for ZSA Moonlander keyboard (because I didn't find their Oryx or their training tool particularly us

10 Jul 19, 2022
Pydrawer: The Python package for visualizing curves and linear transformations in a super simple way

pydrawer 📐 The Python package for visualizing curves and linear transformations in a super simple way. ✏️ Installation Install pydrawer package with

Dylan Tintenfich 56 Dec 30, 2022
This is a place where I'm playing around with pandas to analyze data in a csv/excel file.

pandas-csv-excel-analysis This is a place where I'm playing around with pandas to analyze data in a csv/excel file. 0-start A very simple cheat sheet

Chuqin 3 Oct 05, 2022
Kglab - an abstraction layer in Python for building knowledge graphs

Graph Data Science: an abstraction layer in Python for building knowledge graphs, integrated with popular graph libraries – atop Pandas, RDFlib, pySHACL, RAPIDS, NetworkX, iGraph, PyVis, pslpython, p

derwen.ai 466 Jan 09, 2023
Simple function to plot multiple barplots in the same figure.

Simple function to plot multiple barplots in the same figure. Supports padding and custom color.

Matthias Jakobs 2 Feb 21, 2022
Implement the Perspective open source code in preparation for data visualization

Task Overview | Installation Instructions | Link to Module 2 Introduction Experience Technology at JP Morgan Chase Try out what real work is like in t

Abdulazeez Jimoh 1 Jan 23, 2022
Simple, realtime visualization of neural network training performance.

pastalog Simple, realtime visualization server for training neural networks. Use with Lasagne, Keras, Tensorflow, Torch, Theano, and basically everyth

Rewon Child 416 Dec 29, 2022
Python Data Validation for Humans™.

validators Python data validation for Humans. Python has all kinds of data validation tools, but every one of them seems to require defining a schema

Konsta Vesterinen 670 Jan 09, 2023
This is a web application to visualize various famous technical indicators and stocks tickers from user

Visualizing Technical Indicators Using Python and Plotly. Currently facing issues hosting the application on heroku. As soon as I am able to I'll like

4 Aug 04, 2022
Political elections, appointment, analysis and visualization in Python

Political elections, appointment, analysis and visualization in Python poli-sci-kit is a Python package for political science appointment and election

Andrew Tavis McAllister 9 Dec 01, 2022
Python wrapper for Synoptic Data API. Retrieve data from thousands of mesonet stations and networks. Returns JSON from Synoptic as Pandas DataFrame

☁ Synoptic API for Python (unofficial) The Synoptic Mesonet API (formerly MesoWest) gives you access to real-time and historical surface-based weather

Brian Blaylock 23 Jan 06, 2023
Generate a 3D Skyline in STL format and a OpenSCAD file from Gitlab contributions

Your Gitlab's contributions in a 3D Skyline gitlab-skyline is a Python command to generate a skyline figure from Gitlab contributions as Github did at

Félix Gómez 70 Dec 22, 2022
Info for The Great DataTas plot-a-thon

The Great DataTas plot-a-thon Datatas is organising a Data Visualisation competition: The Great DataTas plot-a-thon We will be using Tidy Tuesday data

2 Nov 21, 2021
Simple and fast histogramming in Python accelerated with OpenMP.

pygram11 Simple and fast histogramming in Python accelerated with OpenMP with help from pybind11. pygram11 provides functions for very fast histogram

Doug Davis 28 Dec 14, 2022
Pyan3 - Offline call graph generator for Python 3

Pyan takes one or more Python source files, performs a (rather superficial) static analysis, and constructs a directed graph of the objects in the combined source, and how they define or use each oth

Juha Jeronen 235 Jan 02, 2023
Debugging, monitoring and visualization for Python Machine Learning and Data Science

Welcome to TensorWatch TensorWatch is a debugging and visualization tool designed for data science, deep learning and reinforcement learning from Micr

Microsoft 3.3k Dec 27, 2022
ICS-Visualizer is an interactive Industrial Control Systems (ICS) network graph that contains up-to-date ICS metadata

ICS-Visualizer is an interactive Industrial Control Systems (ICS) network graph that contains up-to-date ICS metadata (Name, company, port, user manua

QeeqBox 2 Dec 13, 2021
Automatically generate GitHub activity!

Commit Bot Automatically generate GitHub activity! We've all wanted to be the developer that commits every day, but that requires a lot of work. Let's

Ricky 4 Jun 07, 2022