Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Overview

Finite basis physics-informed neural networks (FBPINNs)


This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations, B. Moseley, T. Nissen-Meyer and A. Markham, Jul 2021 ArXiv.


Key contributions

  • Physics-informed neural networks (PINNs) offer a powerful new paradigm for solving problems relating to differential equations
  • However, a key limitation is that PINNs struggle to scale to problems with large domains and/or multi-scale solutions
  • We present finite basis physics-informed neural networks (FBPINNs), which are able to scale to these problems
  • To do so, FBPINNs use a combination of domain decomposition, subdomain normalisation and flexible training schedules
  • FBPINNs outperform PINNs in terms of accuracy and computational resources required

Workflow

FBPINNs divide the problem domain into many small, overlapping subdomains. A neural network is placed within each subdomain such that within the center of the subdomain, the network learns the full solution, whilst in the overlapping regions, the solution is defined as the sum over all overlapping networks.

We use smooth, differentiable window functions to locally confine each network to its subdomain, and the inputs of each network are individually normalised over the subdomain.

In comparison to existing domain decomposition techniques, FBPINNs do not require additional interface terms in their loss function, and they ensure the solution is continuous across subdomain interfaces by the construction of their solution ansatz.

Installation

FBPINNs only requires Python libraries to run.

We recommend setting up a new environment, for example:

conda create -n fbpinns python=3  # Use conda package manager
conda activate fbpinns

and then installing the following libraries:

conda install scipy matplotlib jupyter
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
pip install tensorboardX

All of our work was completed using PyTorch version 1.8.1 with CUDA 10.2.

Finally, download the source code:

git clone https://github.com/benmoseley/FBPINNs.git

Getting started

The workflow to train and compare FBPINNs and PINNs is very simple to set up, and consists of three steps:

  1. Initialise a problems.Problem class, which defines the differential equation (and boundary condition) you want to solve
  2. Initialise a constants.Constants object, which defines all of the other training hyperparameters (domain, number of subdomains, training schedule, .. etc)
  3. Pass this Constants object to the main.FBPINNTrainer or main.PINNTrainer class and call the .train() method to start training.

For example, to solve the problem du/dx = cos(wx) shown above you can use the following code to train a FBPINN / PINN:

P = problems.Cos1D_1(w=1, A=0)# initialise problem class

c1 = constants.Constants(
            RUN="FBPINN_%s"%(P.name),# run name
            P=P,# problem class
            SUBDOMAIN_XS=[np.linspace(-2*np.pi,2*np.pi,5)],# defines subdomains
            SUBDOMAIN_WS=[2*np.ones(5)],# defines width of overlapping regions between subdomains
            BOUNDARY_N=(1/P.w,),# optional arguments passed to the constraining operator
            Y_N=(0,1/P.w,),# defines unnormalisation
            ACTIVE_SCHEDULER=active_schedulers.AllActiveSchedulerND,# training scheduler
            ACTIVE_SCHEDULER_ARGS=(),# training scheduler arguments
            N_HIDDEN=16,# number of hidden units in subdomain network
            N_LAYERS=2,# number of hidden layers in subdomain network
            BATCH_SIZE=(200,),# number of training points
            N_STEPS=5000,# number of training steps
            BATCH_SIZE_TEST=(400,),# number of testing points
            )

run = main.FBPINNTrainer(c1)# train FBPINN
run.train()

c2 = constants.Constants(
            RUN="PINN_%s"%(P.name),
            P=P,
            SUBDOMAIN_XS=[np.linspace(-2*np.pi,2*np.pi,5)],
            BOUNDARY_N=(1/P.w,),
            Y_N=(0,1/P.w,),
            N_HIDDEN=32,
            N_LAYERS=3,
            BATCH_SIZE=(200,),
            N_STEPS=5000,
            BATCH_SIZE_TEST=(400,),
            )

run = main.PINNTrainer(c2)# train PINN
run.train()

The training code will automatically start outputting training statistics, plots and tensorboard summaries. The tensorboard summaries can be viewed by installing tensorboard and then running the command line tensorboard --logdir fbpinns/results/summaries/.

Defining your own problem.Problem class

To learn how to define and solve your own problem, see the Defining your own problem Jupyter notebook here.

Reproducing our results

The purpose of each folder is as follows:

  • fbpinns : contains the main code which defines and trains FBPINNs.
  • analytical_solutions : contains a copy of the BURGERS_SOLUTION code used to compute the exact solution to the Burgers equation problem.
  • seismic-cpml : contains a Python implementation of the SEISMIC_CPML FD library used to solve the wave equation problem.
  • shared_modules : contains generic Python helper functions and classes.

To reproduce the results in the paper, use the following steps:

  1. Run the scripts fbpinns/paper_main_1D.py, fbpinns/paper_main_2D.py, fbpinns/paper_main_3D.py. These train and save all of the FBPINNs and PINNs presented in the paper.
  2. Run the notebook fbpinns/Paper plots.ipynb. This generates all of the plots in the paper.

Further questions?

Please raise a GitHub issue or feel free to contact us.

Owner
Ben Moseley
Physics + AI researcher at University of Oxford, ML lead at NASA Frontier Development Lab
Ben Moseley
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022
We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC).

EMTAUC We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC). In this code, SBGA is considered a ba

7 Nov 24, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021.

inverse_attention This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021. Le

Firas Laakom 5 Jul 08, 2022
Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference This repo is the implementation for SD

Microsoft 36 Nov 28, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Multi-Glimpse Network: A Robust and Efficient Classification Architecture based on Recurrent Downsampled Attention arXiv Require

9 May 10, 2022
Udacity Suse Cloud Native Foundations Scholarship Course Walkthrough

SUSE Cloud Native Foundations Scholarship Udacity is collaborating with SUSE, a global leader in true open source solutions, to empower developers and

Shivansh Srivastava 34 Oct 18, 2022
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023
Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL, and utterance id

TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL

3 Dec 26, 2022
Sematic-Segmantation - Semantic Segmentation on MIT ADE20K dataset in PyTorch

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch impleme

Berat Eren Terzioğlu 4 Mar 22, 2022
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
Caffe: a fast open framework for deep learning.

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR)/The Berke

Berkeley Vision and Learning Center 33k Dec 28, 2022
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

1 Jan 06, 2022
hipCaffe: the HIP port of Caffe

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Cent

ROCm Software Platform 126 Dec 05, 2022