Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Overview

Welcome to Yearn Gnosis Safe!

This repository contains Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS.

The infrastructure is defined using AWS Cloud Development Kit (AWS CDK). AWS CDK is an open source software development framework to define your cloud application resources using familiar programming languages.

These definitions can then be synthesized to AWS CloudFormation Templates which can be deployed AWS.

Setting up your local environment

Clone this repository.

It is best practice to use an isolated environment when working with this project. To manually create a virtualenv virtual environment on MacOS and Linux:

$ python3 -m venv .venv

After the init process completes and the virtualenv is created, you can use the following step to activate your virtualenv.

$ source .venv/bin/activate

If you are a Windows platform, you would activate the virtualenv like this:

% .venv\Scripts\activate.bat

Once the virtualenv is activated, you can install the required dependencies.

$ pip install -r requirements.txt
$ pip install -r requirements-dev.txt

At this point you can now synthesize the CloudFormation template for this code.

$ cdk synth

Infrastructure

The following diagram provides a high level overview of the infrastructure that this repository deploys:

Infrastructure Diagram

Source

  1. The production bundle is deployed to an S3 bucket. You should be able to find the URL of the frontend UI by looking at the Bucket website endpoint in the Static website hosting section of the bucket's properties.
  2. The frontend UI uses blockchain nodes to power some of the functionality. You can use a service such as Infura or Alchemy.
  3. The UI performs most of its functionality by communicating with the Client Gateway.
  4. The Client Gateway retrieves information about safes from the transaction service. There is a transaction service deployed for Mainnet and Rinkeby.
  5. The Client Gateway also relies on the configuration service to determine which nodes and services to use for each network.
  6. Secrets store stores credentials for all the different services.
  7. The transaction service monitors Ethereum nodes for new blocks and inspects transactions with the trace API to index new safe related events.

Deploying Gnosis Safe

Deploying can be summarized in the following steps:

  1. Create infrastructure for secrets and add secrets
  2. Build production bundle of the Gnosis Safe UI
  3. Create the rest of the Gnosis Safe infrastructure (Client Gateway, Transaction Service, UI, Configuration Service)
  4. Index transaction data for existing safes

Prerequisites

Before you start you need to install AWS CDK CLI and bootstrap your AWS account:

  1. Prerequisites
  2. Install AWS CDK Locally
  3. Bootstrapping

The infrastructure in this repository requires a VPC with at least one public subnet. If you don't have a VPC that meets this criteria or want to provision a new VPC for this project, you can follow the instructions here.

To install a self hosted version of Gnosis Safe, you'll also need the following:

  1. An Ethereum Mainnet node with the Openethereum trace api
  2. An Ethereum Rinkeby node with the Openethereum trace api
  3. An Infura API key
  4. An Etherscan API key
  5. An Eth Gas Station API key
  6. An Exchange Rate API key

1. Create infrastructure for secrets and add secrets

Use the AWS CDK CLI to deploy the shared infrastructure including a Secrets Vault where all sensitive secrets will be stored:

$ CDK_DEPLOY_ACCOUNT="111111111111" CDK_DEPLOY_REGION="us-east-1" cdk deploy GnosisSafeStack/GnosisShared --require-approval never

CDK_DEPLOY_ACCOUNT and CDK_DEPLOY_REGION define the account and region you're deploying the infrastructure to respectively

The deployment should create a shared secrets vault for all your secrets as well 2 secrets vaults for Postgres database credentials: one for the Rinkeby Transaction Service and one for the Mainnet Transaction Service.

You can distinguish the different vaults by inspecting their tags. The Shared Secrets vault will have a aws:cloudformation:logical-id that starts with GnosisSharedSecrets

Mainnet Postgres database credentials secrets vault will have a aws:cloudformation:logical-id that starts with GnosisSafeStackGnosisSharedMainnetTxDatabaseSecret

Rinkeby Postgres database credentials secrets vault will have a aws:cloudformation:logical-id that starts with GnosisSafeStackGnosisSharedRinkebyTxDatabaseSecret

Fill out the following credentials in the Shared Secrets vault:

  1. TX_DATABASE_URL_MAINNET - Use the Mainnet Postgres database credentials and create a URL using the following template: postgres://postgres:<PASSWORD>@<URL>:5432/postgres
  2. TX_ETHEREUM_TRACING_NODE_URL_MAINNET - An Ethereum Mainnet node URL that has access to the trace API
  3. TX_ETHEREUM_NODE_URL_MAINNET - An Ethereum Mainnet node URL. Can be the same as TX_ETHEREUM_TRACING_NODE_URL_MAINNET
  4. TX_DJANGO_SECRET_KEY_MAINNET - Generate randomly using openssl rand -base64 18
  5. TX_DATABASE_URL_RINKEBY - Use the Rinkeby Postgres database credentials and create a URL using the following template: postgres://postgres:<PASSWORD>@<URL>:5432/postgres
  6. TX_ETHEREUM_TRACING_NODE_URL_RINKEBY - An Ethereum Rinkeby node URL that has access to the trace API
  7. TX_ETHEREUM_NODE_URL_RINKEBY - An Ethereum Rinkeby node URL. Can be the same as TX_ETHEREUM_TRACING_NODE_URL_RINKEBY
  8. TX_DJANGO_SECRET_KEY_RINKEBY - Generate randomly using openssl rand -base64 18
  9. UI_REACT_APP_INFURA_TOKEN - An Infura API token to use in the Frontend UI
  10. UI_REACT_APP_SAFE_APPS_RPC_INFURA_TOKEN - An Infura API token that you want to use for RPC calls. Can be the same as UI_REACT_APP_INFURA_TOKEN.
  11. CFG_DJANGO_SUPERUSER_EMAIL - The email address for the superuser of the Configuration service
  12. CFG_DJANGO_SUPERUSER_PASSWORD - The password for the superuser of the Configuration service. Randomly generate using openssl rand -base64 18.
  13. CFG_DJANGO_SUPERUSER_USERNAME - The username for the superuser of the Configuration service
  14. CFG_SECRET_KEY - Generate randomly using openssl rand -base64 18
  15. CGW_EXCHANGE_API_KEY - Your Exchange Rate API key
  16. UI_REACT_APP_ETHERSCAN_API_KEY - Your Etherscan API key
  17. CGW_ROCKET_SECRET_KEY - Generate randomly using date |md5 | head -c24; echo
  18. UI_REACT_APP_ETHGASSTATION_API_KEY - Your Eth Gas Station API key
  19. CGW_WEBHOOK_TOKEN - Generate randomly using date |md5 | head -c24; echo
  20. password - Not used. Leave as is.

2. Build production bundle of the Gnosis Safe UI

The Gnosis Safe UI is part of this GitHub repo as a submodule in the docker/ui/safe-react folder. Ensure that the submodule has been initialized:

$ git submodule update --init --recursive

To build the production bundle of the Gnosis Safe UI, use the build script in the docker/ui directory:

$ cd docker/ui
$ ENVIRONMENT_NAME=production ./build.sh
$ ../..

3. Create the rest of the Gnosis Safe infrastructure (Client Gateway, Transaction Service, UI, Configuration Service)

Deploy the rest of the Gnosis Safe infrastructure:

$ CDK_DEPLOY_ACCOUNT="111111111111" CDK_DEPLOY_REGION="us-east-1" cdk deploy --all --require-approval never

4. Index transaction data for existing safes

Indexing happens automatically, however, it can take 12+ hours for indexing to catch up to the most recent transaction. Once indexing is complete, you should be able to add any existing safe.

Docker Containers

This project uses the official Gnosis Safe Docker Images as a base and applies some modifications to support a self-hosted version.

All customized Dockerfiles can be found in the docker/ directory.

Client Gateway

There are no modifications made to the original docker image.

Configuration Service

Adds a new command to bootstrap the configuration service with configurations that replicate the configurations found on the official Gnosis Safe Configuration Service.

The bootstrap command is designed to run only if there are no existing configurations.

Also modifies the default container command run by the container to run the bootstrap command on initialization.

Transactions Service

Installs a new CLI command reindex_master_copies_with_retry and a new Gnosis Safe indexer retryable_index_service that retries if a JSON RPC call fails during indexing. This was added to make indexing more reliable during initial bootstraping after a new install.

Gnosis Safe UI

Contains a git submodule with the official Gnosis Safe UI. It uses the official Gnosis Safe UI repository to build the production bundle.

Before building a production file, some of the original configuration files are replaced. The current official ui hard codes the url for the configuration and transaction services. The configuration files are replaced to point to the newly deployed configuration and transaction services.

Running docker/ui/build.sh will automatically replace the configuration files and build a production bundle.

The UI is the only component that isn't hosted in a docker container. It is hosted as a static website on S3.

Owner
Numan
Numan
PolyGlot, a fuzzing framework for language processors

PolyGlot, a fuzzing framework for language processors Build We tested PolyGlot on Ubuntu 18.04. Get the source code: git clone https://github.com/s3te

Software Systems Security Team at Penn State University 79 Dec 27, 2022
This repo holds codes of the ICCV21 paper: Visual Alignment Constraint for Continuous Sign Language Recognition.

VAC_CSLR This repo holds codes of the paper: Visual Alignment Constraint for Continuous Sign Language Recognition.(ICCV 2021) [paper] Prerequisites Th

Yuecong Min 64 Dec 19, 2022
Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

tonne 1.4k Dec 29, 2022
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
This repository contains the source code of our work on designing efficient CNNs for computer vision

Efficient networks for Computer Vision This repo contains source code of our work on designing efficient networks for different computer vision tasks:

Sachin Mehta 386 Nov 26, 2022
Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks

Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks This is our Pytorch implementation for the paper: Zirui Zhu, Chen Gao, Xu C

Zirui Zhu 3 Dec 30, 2022
Parameter Efficient Deep Probabilistic Forecasting

PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr

Olivier Sprangers 10 Jun 13, 2022
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

Snapdragon Lee 2 Dec 16, 2022
Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.

Box_Discretization_Network This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method

Yuliang Liu 266 Nov 24, 2022
UNet model with VGG11 encoder pre-trained on Kaggle Carvana dataset

TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation By Vladimir Iglovikov and Alexey Shvets Introduction TernausNet is

Vladimir Iglovikov 1k Dec 28, 2022
This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Joshua Marshall 4 Aug 24, 2022
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark."

FFA-IR The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark." The framework is inheri

Mingjie 28 Dec 16, 2022
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022
A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
WSDM‘2022: Knowledge Enhanced Sports Game Summarization

Knowledge Enhanced Sports Game Summarization Cooming Soon! :) Data will be released after approval process. Code will be published once the author of

Jiaan Wang 14 Jul 13, 2022
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Theis Lab 77 Dec 30, 2022