Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Overview

Welcome to Yearn Gnosis Safe!

This repository contains Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS.

The infrastructure is defined using AWS Cloud Development Kit (AWS CDK). AWS CDK is an open source software development framework to define your cloud application resources using familiar programming languages.

These definitions can then be synthesized to AWS CloudFormation Templates which can be deployed AWS.

Setting up your local environment

Clone this repository.

It is best practice to use an isolated environment when working with this project. To manually create a virtualenv virtual environment on MacOS and Linux:

$ python3 -m venv .venv

After the init process completes and the virtualenv is created, you can use the following step to activate your virtualenv.

$ source .venv/bin/activate

If you are a Windows platform, you would activate the virtualenv like this:

% .venv\Scripts\activate.bat

Once the virtualenv is activated, you can install the required dependencies.

$ pip install -r requirements.txt
$ pip install -r requirements-dev.txt

At this point you can now synthesize the CloudFormation template for this code.

$ cdk synth

Infrastructure

The following diagram provides a high level overview of the infrastructure that this repository deploys:

Infrastructure Diagram

Source

  1. The production bundle is deployed to an S3 bucket. You should be able to find the URL of the frontend UI by looking at the Bucket website endpoint in the Static website hosting section of the bucket's properties.
  2. The frontend UI uses blockchain nodes to power some of the functionality. You can use a service such as Infura or Alchemy.
  3. The UI performs most of its functionality by communicating with the Client Gateway.
  4. The Client Gateway retrieves information about safes from the transaction service. There is a transaction service deployed for Mainnet and Rinkeby.
  5. The Client Gateway also relies on the configuration service to determine which nodes and services to use for each network.
  6. Secrets store stores credentials for all the different services.
  7. The transaction service monitors Ethereum nodes for new blocks and inspects transactions with the trace API to index new safe related events.

Deploying Gnosis Safe

Deploying can be summarized in the following steps:

  1. Create infrastructure for secrets and add secrets
  2. Build production bundle of the Gnosis Safe UI
  3. Create the rest of the Gnosis Safe infrastructure (Client Gateway, Transaction Service, UI, Configuration Service)
  4. Index transaction data for existing safes

Prerequisites

Before you start you need to install AWS CDK CLI and bootstrap your AWS account:

  1. Prerequisites
  2. Install AWS CDK Locally
  3. Bootstrapping

The infrastructure in this repository requires a VPC with at least one public subnet. If you don't have a VPC that meets this criteria or want to provision a new VPC for this project, you can follow the instructions here.

To install a self hosted version of Gnosis Safe, you'll also need the following:

  1. An Ethereum Mainnet node with the Openethereum trace api
  2. An Ethereum Rinkeby node with the Openethereum trace api
  3. An Infura API key
  4. An Etherscan API key
  5. An Eth Gas Station API key
  6. An Exchange Rate API key

1. Create infrastructure for secrets and add secrets

Use the AWS CDK CLI to deploy the shared infrastructure including a Secrets Vault where all sensitive secrets will be stored:

$ CDK_DEPLOY_ACCOUNT="111111111111" CDK_DEPLOY_REGION="us-east-1" cdk deploy GnosisSafeStack/GnosisShared --require-approval never

CDK_DEPLOY_ACCOUNT and CDK_DEPLOY_REGION define the account and region you're deploying the infrastructure to respectively

The deployment should create a shared secrets vault for all your secrets as well 2 secrets vaults for Postgres database credentials: one for the Rinkeby Transaction Service and one for the Mainnet Transaction Service.

You can distinguish the different vaults by inspecting their tags. The Shared Secrets vault will have a aws:cloudformation:logical-id that starts with GnosisSharedSecrets

Mainnet Postgres database credentials secrets vault will have a aws:cloudformation:logical-id that starts with GnosisSafeStackGnosisSharedMainnetTxDatabaseSecret

Rinkeby Postgres database credentials secrets vault will have a aws:cloudformation:logical-id that starts with GnosisSafeStackGnosisSharedRinkebyTxDatabaseSecret

Fill out the following credentials in the Shared Secrets vault:

  1. TX_DATABASE_URL_MAINNET - Use the Mainnet Postgres database credentials and create a URL using the following template: postgres://postgres:<PASSWORD>@<URL>:5432/postgres
  2. TX_ETHEREUM_TRACING_NODE_URL_MAINNET - An Ethereum Mainnet node URL that has access to the trace API
  3. TX_ETHEREUM_NODE_URL_MAINNET - An Ethereum Mainnet node URL. Can be the same as TX_ETHEREUM_TRACING_NODE_URL_MAINNET
  4. TX_DJANGO_SECRET_KEY_MAINNET - Generate randomly using openssl rand -base64 18
  5. TX_DATABASE_URL_RINKEBY - Use the Rinkeby Postgres database credentials and create a URL using the following template: postgres://postgres:<PASSWORD>@<URL>:5432/postgres
  6. TX_ETHEREUM_TRACING_NODE_URL_RINKEBY - An Ethereum Rinkeby node URL that has access to the trace API
  7. TX_ETHEREUM_NODE_URL_RINKEBY - An Ethereum Rinkeby node URL. Can be the same as TX_ETHEREUM_TRACING_NODE_URL_RINKEBY
  8. TX_DJANGO_SECRET_KEY_RINKEBY - Generate randomly using openssl rand -base64 18
  9. UI_REACT_APP_INFURA_TOKEN - An Infura API token to use in the Frontend UI
  10. UI_REACT_APP_SAFE_APPS_RPC_INFURA_TOKEN - An Infura API token that you want to use for RPC calls. Can be the same as UI_REACT_APP_INFURA_TOKEN.
  11. CFG_DJANGO_SUPERUSER_EMAIL - The email address for the superuser of the Configuration service
  12. CFG_DJANGO_SUPERUSER_PASSWORD - The password for the superuser of the Configuration service. Randomly generate using openssl rand -base64 18.
  13. CFG_DJANGO_SUPERUSER_USERNAME - The username for the superuser of the Configuration service
  14. CFG_SECRET_KEY - Generate randomly using openssl rand -base64 18
  15. CGW_EXCHANGE_API_KEY - Your Exchange Rate API key
  16. UI_REACT_APP_ETHERSCAN_API_KEY - Your Etherscan API key
  17. CGW_ROCKET_SECRET_KEY - Generate randomly using date |md5 | head -c24; echo
  18. UI_REACT_APP_ETHGASSTATION_API_KEY - Your Eth Gas Station API key
  19. CGW_WEBHOOK_TOKEN - Generate randomly using date |md5 | head -c24; echo
  20. password - Not used. Leave as is.

2. Build production bundle of the Gnosis Safe UI

The Gnosis Safe UI is part of this GitHub repo as a submodule in the docker/ui/safe-react folder. Ensure that the submodule has been initialized:

$ git submodule update --init --recursive

To build the production bundle of the Gnosis Safe UI, use the build script in the docker/ui directory:

$ cd docker/ui
$ ENVIRONMENT_NAME=production ./build.sh
$ ../..

3. Create the rest of the Gnosis Safe infrastructure (Client Gateway, Transaction Service, UI, Configuration Service)

Deploy the rest of the Gnosis Safe infrastructure:

$ CDK_DEPLOY_ACCOUNT="111111111111" CDK_DEPLOY_REGION="us-east-1" cdk deploy --all --require-approval never

4. Index transaction data for existing safes

Indexing happens automatically, however, it can take 12+ hours for indexing to catch up to the most recent transaction. Once indexing is complete, you should be able to add any existing safe.

Docker Containers

This project uses the official Gnosis Safe Docker Images as a base and applies some modifications to support a self-hosted version.

All customized Dockerfiles can be found in the docker/ directory.

Client Gateway

There are no modifications made to the original docker image.

Configuration Service

Adds a new command to bootstrap the configuration service with configurations that replicate the configurations found on the official Gnosis Safe Configuration Service.

The bootstrap command is designed to run only if there are no existing configurations.

Also modifies the default container command run by the container to run the bootstrap command on initialization.

Transactions Service

Installs a new CLI command reindex_master_copies_with_retry and a new Gnosis Safe indexer retryable_index_service that retries if a JSON RPC call fails during indexing. This was added to make indexing more reliable during initial bootstraping after a new install.

Gnosis Safe UI

Contains a git submodule with the official Gnosis Safe UI. It uses the official Gnosis Safe UI repository to build the production bundle.

Before building a production file, some of the original configuration files are replaced. The current official ui hard codes the url for the configuration and transaction services. The configuration files are replaced to point to the newly deployed configuration and transaction services.

Running docker/ui/build.sh will automatically replace the configuration files and build a production bundle.

The UI is the only component that isn't hosted in a docker container. It is hosted as a static website on S3.

Owner
Numan
Numan
Motion planning algorithms commonly used on autonomous vehicles. (path planning + path tracking)

Overview This repository implemented some common motion planners used on autonomous vehicles, including Hybrid A* Planner Frenet Optimal Trajectory Hi

Huiming Zhou 1k Jan 09, 2023
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
Detecting Potentially Harmful and Protective Suicide-related Content on Twitter

TwitterSuicideML Scripts for reproducing the Machine Learning analysis of the paper: Detecting Potentially Harmful and Protective Suicide-related Cont

3 Oct 17, 2022
Pipeline code for Sequential-GAM(Genome Architecture Mapping).

Sequential-GAM Pipeline code for Sequential-GAM(Genome Architecture Mapping). mapping whole_preprocess.sh include the whole processing of mapping. usa

3 Nov 03, 2022
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
22 Oct 14, 2022
D2Go is a toolkit for efficient deep learning

D2Go D2Go is a production ready software system from FacebookResearch, which supports end-to-end model training and deployment for mobile platforms. W

Facebook Research 744 Jan 04, 2023
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz 206 Jan 04, 2023
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization This repository contains the code for the BBI optimizer, introduced in the p

G. Bruno De Luca 5 Sep 06, 2022
Accelerate Neural Net Training by Progressively Freezing Layers

FreezeOut A simple technique to accelerate neural net training by progressively freezing layers. This repository contains code for the extended abstra

Andy Brock 203 Jun 19, 2022
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
Computer Vision and Pattern Recognition, NUS CS4243, 2022

CS4243_2022 Computer Vision and Pattern Recognition, NUS CS4243, 2022 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : h

Xavier Bresson 142 Dec 15, 2022
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
Stochastic Scene-Aware Motion Prediction

Stochastic Scene-Aware Motion Prediction [Project Page] [Paper] Description This repository contains the training code for MotionNet and GoalNet of SA

Mohamed Hassan 31 Dec 09, 2022