Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

Overview

SemanticGAN

This is the official code for:

Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalization

Daiqing Li, Junlin Yang, Karsten Kreis, Antonio Torralba, Sanja Fidler

CVPR 2021 [Paper] [Supp] [Page]

Requirements

  • Python 3.6 or 3.7 are supported.
  • Pytorch 1.4.0 + is recommended.
  • This code is tested with CUDA 10.2 toolkit and CuDNN 7.5.
  • Please check the python package requirement from requirements.txt, and install using
pip install -r requirements.txt

Training

To reproduce paper Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalization:

  1. Run Step1: Semantic GAN training
  2. Run Step2: Encoder training
  3. Run Inference & Optimization.

0. Prepare for FID calculation

In order to calculate FID score, you need to prepare inception features for your dataset,

python prepare_inception.py \
--size [resolution of the image] \
--batch [batch size] \
--output [path to save the inception file, in .pkl] \
--dataset_name celeba-mask \
[positional argument 1, path to the image folder]] \

1. GAN Training

For training GAN with both image and its label,

python train_seg_gan.py \
--img_dataset [path-to-img-folder] \
--seg_dataset [path-to-seg-folder] \
--inception [path-to-inception file] \
--seg_name celeba-mask \
--checkpoint_dir [path-to-ckpt-dir] \

To use multi-gpus training in the cloud,

python -m torch.distributed.launch \
--nproc_per_node=N_GPU \
--master_port=PORTtrain_gan.py \
train_gan.py \
--img_dataset [path-to-img-folder] \
--inception [path-to-inception file] \
--dataset_name celeba-mask \
--checkpoint_dir [path-to-ckpt-dir] \

2. Encoder Triaining

python train_enc.py \
--img_dataset [path-to-img-folder] \
--seg_dataset [path-to-seg-folder] \
--ckpt [path-to-pretrained GAN model] \
--seg_name celeba-mask \
--enc_backboend [fpn|res] \
--checkpoint_dir [path-to-ckpt-dir] \

Inference

For Face Parts Segmentation Task

img

python inference.py \
--ckpt [path-to-ckpt] \
--img_dir [path-to-test-folder] \
--outdir [path-to-output-folder] \
--dataset_name celeba-mask \
--w_plus \
--image_mode RGB \
--seg_dim 8 \
--step 200 [optimization steps] \

Visualization of different optimization steps

img

Citation

Please cite the following paper if you used the code in this repository.

@inproceedings{semanticGAN, 
title={Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalization}, 
booktitle={Conference on Computer Vision and Pattern Recognition (CVPR)}, 
author={Li, Daiqing and Yang, Junlin and Kreis, Karsten and Torralba, Antonio and Fidler, Sanja}, 
year={2021}, 
}

License

For any code dependency related to Stylegan2, the license is under the Nvidia Source Code License-NC. To view a copy of this license, visit https://nvlabs.github.io/stylegan2/license.html

The work SemanticGAN is released under MIT License.

The MIT License (MIT)

Copyright (c) 2021 NVIDIA Corporation. 

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
Official pytorch code for "APP: Anytime Progressive Pruning"

APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L

Landskape AI 12 Nov 22, 2022
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021) Paper Introduction The conventional detectors tend to make imba

52 Nov 21, 2022
Emotion Recognition from Facial Images

Reconhecimento de Emoções a partir de imagens faciais Este projeto implementa um classificador simples que utiliza técncias de deep learning e transfe

Gabriel 2 Feb 09, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
[ICCV21] Official implementation of the "Social NCE: Contrastive Learning of Socially-aware Motion Representations" in PyTorch.

Social-NCE + CrowdNav Website | Paper | Video | Social NCE + Trajectron | Social NCE + STGCNN This is an official implementation for Social NCE: Contr

VITA lab at EPFL 125 Dec 23, 2022
Spline is a tool that is capable of running locally as well as part of well known pipelines like Jenkins (Jenkinsfile), Travis CI (.travis.yml) or similar ones.

Welcome to spline - the pipeline tool Important note: Since change in my job I didn't had the chance to continue on this project. My main new project

Thomas Lehmann 29 Aug 22, 2022
Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

Ankush Malaker 5 Nov 11, 2022
Database Reasoning Over Text project for ACL paper

Database Reasoning over Text This repository contains the code for the Database Reasoning Over Text paper, to appear at ACL2021. Work is performed in

Facebook Research 320 Dec 12, 2022
Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646

[TCSVT] Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization LPN [Paper] NEWs Prerequisites Python 3.6 GPU Memory = 8G Numpy 1.

46 Dec 14, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Jihye Back 520 Jan 04, 2023
Generates all variables from your .tf files into a variables.tf file.

tfvg Generates all variables from your .tf files into a variables.tf file. It searches for every var.variable_name in your .tf files and generates a v

1 Dec 01, 2022
Emblaze - Interactive Embedding Comparison

Emblaze - Interactive Embedding Comparison Emblaze is a Jupyter notebook widget for visually comparing embeddings using animated scatter plots. It bun

CMU Data Interaction Group 77 Nov 24, 2022
Final term project for Bayesian Machine Learning Lecture (XAI-623)

Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula

JeongEun Park 3 Jan 18, 2022
A Dataset for Direct Quotation Extraction and Attribution in News Articles.

DirectQuote - A Dataset for Direct Quotation Extraction and Attribution in News Articles DirectQuote is a corpus containing 19,760 paragraphs and 10,3

THUNLP-MT 9 Sep 23, 2022
[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

MMChat This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media. Dataset MMChat is a large-scale d

Silver 47 Jan 03, 2023
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022