The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Overview

Joint t-sne

This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

abstract:

We present Joint t-Stochastic Neighbor Embedding (Joint t-SNE), a technique to generate comparable projections of multiple high-dimensional datasets. Although t-SNE has been widely employed to visualize high-dimensional datasets from various domains, it is limited to projecting a single dataset. When a series of high-dimensional datasets, such as datasets changing over time, is projected independently using t-SNE, misaligned layouts are obtained. Even items with identical features across datasets are projected to different locations, making the technique unsuitable for comparison tasks. To tackle this problem, we introduce edge similarity, which captures the similarities between two adjacent time frames based on the Graphlet Frequency Distribution (GFD). We then integrate a novel loss term into the t-SNE loss function, which we call vector constraints, to preserve the vectors between projected points across the projections, allowing these points to serve as visual landmarks for direct comparisons between projections. Using synthetic datasets whose ground-truth structures are known, we show that Joint t-SNE outperforms existing techniques, including Dynamic t-SNE, in terms of local coherence error, Kullback-Leibler divergence, and neighborhood preservation. We also showcase a real-world use case to visualize and compare the activation of different layers of a neural network.

Environment:

How to use:

  1. Put the directory of your data sequence, e.g. "YOUR_DATA" in ./data. There are several requirements on the format and organization of your data:

    • Each data frame is named as f_i.txt, where i is the time step/index of this data frame in the sequence.
    • The j th row of the data frame contains both the feature vector and label of the j th item, which is seperated by \tab. The label is at the last position.
    • All data frames must have the same number of rows, and the the same item is at the same row in different data frames to compute the node similarities one by one.
  2. Create a configuration file, e.g. "YOUR_DATA.json" in ./config, which is organized as a json structure.

{
  "algo": {
    "k_closest_count": 3,
    "perplexity": 70,
    "bfs_level": 1,
    "gamma": 0.1
  },
  "thesne": {
    "data_name": "YOUR_DATA",
    "pts_size": 2000,
    "norm": false,
    "data_ids": [1, 3, 6, 9],
    "data_dims": [100, 100, 100, 100, 100, 100, 100, 100, 100, 100],
    "data_titles": [
      "t=0",
      "t=1",
      "t=2",
      "t=3",
      "t=4",
      "t=5",
      "t=6",
      "t=7",
      "t=8",
      "t=9"
    ]
  }
}

In this file, algo represents the hyperparamters of our algorithm except for bfs_level, which always equals to 1. thesne contains the information of the input data. Please remember that data_name must be consistent with the directory name in the previous step.

  1. Create a shell script, e.g. "YOUR_DATA.sh" in ./scripts as below:
# !/bin/bash
# 1. specify the path of the configuration file
config_path="config/YOUR_DATA.json"

workdir=$(pwd)

# 2. build knn graph for each data frame
python3 codes/graphBuild/run.py $config_path

# 3. compute edge similarities between each two adjacent data frames
buildDir="codes/graphSim/build"
if [ ! -d $buildDir ]; then
    mkdir $buildDir
    echo "create directory ${buildDir}"
else
    echo "directory ${buildDir} already exists."
fi
cd $buildDir
qmake ../
make

cd $workdir

# bin is dependent on your operating system
bin=$buildDir/graphSim.app/Contents/MacOS/graphSim
$bin $config_path


# 4. run t-sne optimization
python3 codes/thesne/run.py $config_path

There are several places you should pay attention to.

  • Again, config_path must be consitent with the name of configuration file in the previous step

  • bin is dependent on your operating system. If you use linux, you probably should change it to

      bin=$buildDir/graphSim
    
  1. In root directory, type
sh scripts/YOUR_DATA.sh

The final embeddings will be generated in ./results/YOUR_DATA.

  1. Optionally, you can use codes/draw/run.py to plot the embeddings.

Example:

You can find an example in ./scripts/10_cluster_contract.sh.

Owner
IDEAS Lab
Our mission is to enhance people's ability to understand and communicate data through the design of automated visualization and visual analytics systems.
IDEAS Lab
Code for KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs

KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs Check out the paper on arXiv: https://arxiv.org/abs/2103.13744 This repo cont

Christian Reiser 373 Dec 20, 2022
wlad 2 Dec 19, 2022
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

28 Aug 29, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2022/01/05 By another round of training based on previous weights, our model also achieved a better performance on ACDC (91.61% DSC). W

dotman 92 Dec 25, 2022
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.

semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape

HsuanKung Yang 83 Oct 13, 2022
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

isaac 27 Jul 09, 2022
BARTScore: Evaluating Generated Text as Text Generation

This is the Repo for the paper: BARTScore: Evaluating Generated Text as Text Generation Updates 2021.06.28 Release online evaluation Demo 2021.06.25 R

NeuLab 196 Dec 17, 2022
Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Deep learning algorithms for muon momentum estimation in the CMS Trigger System The Compact Muon Solenoid (CMS) is a general-purpose detector at the L

anuragB 2 Oct 06, 2021
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023
Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation

FLAME Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation, accepted at the 17th IEEE Internation Co

Neelabh Sinha 19 Dec 17, 2022
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022
GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

GUPNet This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection". citation If you find our wo

Yan Lu 103 Dec 28, 2022
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
Irrigation controller for Home Assistant

Irrigation Unlimited This integration is for irrigation systems large and small. It can offer some complex arrangements without large and messy script

Robert Cook 176 Jan 02, 2023