ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Overview

Real-Time Semantic Segmentation in TensorFlow

Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Network (ICNet), the highly optimized version of the state-of-the-art Pyramid Scene Parsing Network (PSPNet). This project implements ICNet and PSPNet50 in Tensorflow with training support for Cityscapes.

Download pre-trained ICNet and PSPNet50 models here

Deploy ICNet and preform inference at over 30fps on NVIDIA Titan Xp.

This implementation is based off of the original ICNet paper proposed by Hengshuang Zhao titled ICNet for Real-Time Semantic Segmentation on High-Resolution Images. Some ideas were also taken from their previous PSPNet paper, Pyramid Scene Parsing Network. The network compression implemented is based on the paper Pruning Filters for Efficient ConvNets.

Release information

October 14, 2018

An ICNet model trained in August, 2018 has been released as a pre-trained model in the Model Zoo. All the models were trained without coarse labels and are evaluated on the validation set.

September 22, 2018

The baseline PSPNet50 pre-trained model files have been released publically in the Model Zoo. The accuracy of the model surpases that referenced in the ICNet paper.

August 12, 2018

Initial release. Project includes scripts for training ICNet, evaluating ICNet and compressing ICNet from ResNet50 weights. Also includes scripts for training PSPNet and evaluating PSPNet as a baseline.

Documentation

Model Depot Inference Tutorials

Overview

ICNet model in Tensorboard.

Training ICNet from Classification Weights

This project has implemented the ICNet training process, allowing you to train your own model directly from ResNet50 weights as is done in the original work. Other available implementations simply convert the Caffe model to Tensorflow, only allowing for fine-tuning from weights trained on Cityscapes.

By training ICNet on weights initialized from ImageNet, you have more flexibility in the transfer learning process. Read more about setting up this process can be found here. For training ICNet, follow the guide here.

ICNet Network Compression

In order to achieve real-time speeds, ICNet uses a form of network compression called filter pruning. This drastically reduces the complexity of the model by removing filters from convolutional layers in the network. This project has also implemented this ICNet compression process directly in Tensorflow.

The compression is working, however which "compression scheme" to use is still somewhat ambiguous when reading the original ICNet paper. This is still a work in progress.

PSPNet Baseline Implementation

In order to also reproduce the baselines used in the original ICNet paper, you will also find implementations and pre-trained models for PSPNet50. Since ICNet can be thought of as a modified PSPNet, it can be useful for comparison purposes.

Informtion on training or using the baseline PSPNet50 model can be found here.

Maintainers

If you found the project, documentation and the provided pretrained models useful in your work, consider citing it with

@misc{fastsemseg2018,
  author={Andrienko, Oles},
  title={Fast Semantic Segmentation},
  howpublished={\url{https://github.com/oandrienko/fast-semantic-segmentation}},
  year={2018}
}

Related Work

This project and some of the documentation was based on the Tensorflow Object Detection API. It was the initial inspiration for this project. The third_party directory of this project contains files from OpenAI's Gradient Checkpointing project by Tim Salimans and Yaroslav Bulatov. The helper modules found in third_party/model_deploy.py are from the Tensorflow Slim project. Finally, another open source ICNet implementation which converts the original Caffe network weights to Tensorflow was used as a reference. Find all these projects below:

Thanks

  • This project could not have happened without the advice (and GPU access) given by Professor Steven Waslander and Ali Harakeh from the Waterloo Autonomous Vehicles Lab (now the Toronto Robotics and Artificial Intelligence Lab).
Owner
Oles Andrienko
Oles Andrienko
A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Facebook Research 536 Jan 06, 2023
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Google 2.2k Jan 01, 2023
Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Let's Git - Versionsverwaltung & Open Source Hausaufgabe Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du vi

1 Dec 13, 2021
This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Gautam Singh 66 Dec 26, 2022
Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides

Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides Project | This repo is the officia

CVSM Group - email: <a href=[email protected]"> 33 Dec 28, 2022
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Habitat-Matterport 3D Dataset (HM3D) The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000

Meta Research 62 Dec 27, 2022
Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design"

Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design". CoordAttention tensorflow slim

Billy 9 Aug 22, 2022
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Quasi-Recurrent Neural Network (QRNN) for PyTorch Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py ex

Salesforce 1.3k Dec 28, 2022
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 8 Oct 07, 2022
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
NeuralForecast is a Python library for time series forecasting with deep learning models

NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate m

Nixtla 1.1k Jan 03, 2023
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
Supervised Classification from Text (P)

MSc-Thesis Module: Masters Research Thesis Language: Python Grade: 75 Title: An investigation of supervised classification of therapeutic process from

Matthew Laws 1 Nov 22, 2021
Datasets for new state-of-the-art challenge in disentanglement learning

High resolution disentanglement datasets This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for co

NVIDIA Research Projects 37 May 26, 2022
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
KaziText is a tool for modelling common human errors.

KaziText KaziText is a tool for modelling common human errors. It estimates probabilities of individual error types (so called aspects) from grammatic

ÚFAL 3 Nov 24, 2022