Official code for our CVPR '22 paper "Dataset Distillation by Matching Training Trajectories"

Overview

Dataset Distillation by Matching Training Trajectories

Project Page | Paper


Teaser image

This repo contains code for training expert trajectories and distilling synthetic data from our Dataset Distillation by Matching Training Trajectories paper (CVPR 2022). Please see our project page for more results.

Dataset Distillation by Matching Training Trajectories
George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A. Efros, Jun-Yan Zhu
CMU, MIT, UC Berkeley
CVPR 2022

The task of "Dataset Distillation" is to learn a small number of synthetic images such that a model trained on this set alone will have similar test performance as a model trained on the full real dataset.

Our method distills the synthetic dataset by directly optimizing the fake images to induce similar network training dynamics as the full, real dataset. We train "student" networks for many iterations on the synthetic data, measure the error in parameter space between the "student" and "expert" networks trained on real data, and back-propagate through all the student network updates to optimize the synthetic pixels.

Wearable ImageNet: Synthesizing Tileable Textures

Teaser image

Instead of treating our synthetic data as individual images, we can instead encourage every random crop (with circular padding) on a larger canvas of pixels to induce a good training trajectory. This results in class-based textures that are continuous around their edges.

Given these tileable textures, we can apply them to areas that require such properties, such as clothing patterns.

Visualizations made using FAB3D

Getting Started

First, download our repo:

git clone https://github.com/GeorgeCazenavette/mtt-distillation.git
cd mtt-distillation

For an express instillation, we include .yaml files.

If you have an RTX 30XX GPU (or newer), run

conda env create -f requirements_11_3.yaml

If you have an RTX 20XX GPU (or older), run

conda env create -f requirements_10_2.yaml

You can then activate your conda environment with

conda activate distillation
Quadro Users Take Note:

torch.nn.DataParallel seems to not work on Quadro A5000 GPUs, and this may extend to other Quadro cards.

If you experience indefinite hanging during training, try running the process with only 1 GPU by prepending CUDA_VISIBLE_DEVICES=0 to the command.

Generating Expert Trajectories

Before doing any distillation, you'll need to generate some expert trajectories using buffer.py

The following command will train 100 ConvNet models on CIFAR-100 with ZCA whitening for 50 epochs each:

python buffer.py --dataset=CIFAR100 --model=ConvNet --train_epochs=50 --num_experts=100 --zca --buffer_path={path_to_buffer_storage} --data_path={path_to_dataset}

We used 50 epochs with the default learning rate for all of our experts. Worse (but still interesting) results can be obtained faster through training fewer experts by changing --num_experts. Note that experts need only be trained once and can be re-used for multiple distillation experiments.

Distillation by Matching Training Trajectories

The following command will then use the buffers we just generated to distill CIFAR-100 down to just 1 image per class:

python distill.py --dataset=CIFAR100 --ipc=1 --syn_steps=20 --expert_epochs=3 --max_start_epoch=20 --zca --lr_img=1000 --lr_lr=1e-05 --lr_teacher=0.01 --buffer_path={path_to_buffer_storage} --data_path={path_to_dataset}

ImageNet

Our method can also distill subsets of ImageNet into low-support synthetic sets.

When generating expert trajectories with buffer.py or distilling the dataset with distill.py, you must designate a named subset of ImageNet with the --subset flag.

For example,

python distill.py --dataset=ImageNet --subset=imagefruit --model=ConvNetD5 --ipc=1 --res=128 --syn_steps=20 --expert_epochs=2 --max_start_epoch=10 --lr_img=1000 --lr_lr=1e-06 --lr_teacher=0.01 --buffer_path={path_to_buffer_storage} --data_path={path_to_dataset}

will distill the imagefruit subset (at 128x128 resolution) into the following 10 images

To register your own ImageNet subset, you can add it to the Config class at the top of utils.py.

Simply create a list with the desired class ID's and add it to the dictionary.

This gist contains a list of all 1k ImageNet classes and their corresponding numbers.

Texture Distillation

You can also use the same set of expert trajectories (except those using ZCA) to distill classes into toroidal textures by simply adding the --texture flag.

For example,

python distill.py --texture --dataset=ImageNet --subset=imagesquawk --model=ConvNetD5 --ipc=1 --res=256 --syn_steps=20 --expert_epochs=2 --max_start_epoch=10 --lr_img=1000 --lr_lr=1e-06 --lr_teacher=0.01 --buffer_path={path_to_buffer_storage} --data_path={path_to_dataset}

will distill the imagesquawk subset (at 256x256 resolution) into the following 10 textures

Acknowledgments

We would like to thank Alexander Li, Assaf Shocher, Gokul Swamy, Kangle Deng, Ruihan Gao, Nupur Kumari, Muyang Li, Gaurav Parmar, Chonghyuk Song, Sheng-Yu Wang, and Bingliang Zhang as well as Simon Lucey's Vision Group at the University of Adelaide for their valuable feedback. This work is supported, in part, by the NSF Graduate Research Fellowship under Grant No. DGE1745016 and grants from J.P. Morgan Chase, IBM, and SAP. Our code is adapted from https://github.com/VICO-UoE/DatasetCondensation

Related Work

  1. Tongzhou Wang et al. "Dataset Distillation", in arXiv preprint 2018
  2. Bo Zhao et al. "Dataset Condensation with Gradient Matching", in ICLR 2020
  3. Bo Zhao and Hakan Bilen. "Dataset Condensation with Differentiable Siamese Augmentation", in ICML 2021
  4. Timothy Nguyen et al. "Dataset Meta-Learning from Kernel Ridge-Regression", in ICLR 2021
  5. Timothy Nguyen et al. "Dataset Distillation with Infinitely Wide Convolutional Networks", in NeurIPS 2021
  6. Bo Zhao and Hakan Bilen. "Dataset Condensation with Distribution Matching", in arXiv preprint 2021
  7. Kai Wang et al. "CAFE: Learning to Condense Dataset by Aligning Features", in CVPR 2022

Reference

If you find our code useful for your research, please cite our paper.

@inproceedings{
cazenavette2022distillation,
title={Dataset Distillation by Matching Training Trajectories},
author={George Cazenavette and Tongzhou Wang and Antonio Torralba and Alexei A. Efros and Jun-Yan Zhu},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2022}
}
Owner
George Cazenavette
Carnegie Mellon University
George Cazenavette
Code for "Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification", ECCV 2020 Spotlight

Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification Implementation of "Learning From Multiple Experts: Se

27 Nov 05, 2022
LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021

LoFTR-with-train-script LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021 (with train script --- unofficial ---). About Megadepth

Nan Xiaohu 15 Nov 04, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Super-Fast-Adversarial-Training - A PyTorch Implementation code for developing super fast adversarial training

Super-Fast-Adversarial-Training This is a PyTorch Implementation code for develo

LBK 26 Dec 02, 2022
Einshape: DSL-based reshaping library for JAX and other frameworks.

Einshape: DSL-based reshaping library for JAX and other frameworks. The jnp.einsum op provides a DSL-based unified interface to matmul and tensordot o

DeepMind 62 Nov 30, 2022
Python framework for Stochastic Differential Equations modeling

SDElearn: a Python package for SDE modeling This package implements functionalities for working with Stochastic Differential Equations models (SDEs fo

4 May 10, 2022
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022
🛠️ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

SLAMcore 7 Aug 04, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"

Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w

David Mohlin 1 Dec 04, 2021
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation

Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16

ZJU-VIPA 2 Mar 04, 2022
Libtorch yolov3 deepsort

Overview It is for my undergrad thesis in Tsinghua University. There are four modules in the project: Detection: YOLOv3 Tracking: SORT and DeepSORT Pr

Xu Wei 226 Dec 13, 2022
Age and Gender prediction using Keras

cnn_age_gender Age and Gender prediction using Keras Dataset example : Description : UTKFace dataset is a large-scale face dataset with long age span

XN3UR0N 58 May 03, 2022
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
Histology images query (unsupervised)

110-1-NTU-DBME5028-Histology-images-query Final Project: Histology images query (unsupervised) Kaggle: https://www.kaggle.com/c/histology-images-query

1 Jan 05, 2022
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
免费获取http代理并生成proxifier配置文件

freeproxy 免费获取http代理并生成proxifier配置文件 公众号:台下言书 工具说明:https://mp.weixin.qq.com/s?__biz=MzIyNDkwNjQ5Ng==&mid=2247484425&idx=1&sn=56ccbe130822aa35038095317

说书人 32 Mar 25, 2022
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
Raptor-Multi-Tool - Raptor Multi Tool With Python

Promises 🔥 20 Stars and I'll fix every error that there is 50 Stars and we will

Aran 44 Jan 04, 2023