Python framework for Stochastic Differential Equations modeling

Related tags

Deep Learningsdelearn
Overview

SDElearn: a Python package for SDE modeling

This package implements functionalities for working with Stochastic Differential Equations models (SDEs for short). It includes simulation routines as well as estimation methods based on observed time series.

Installation

The sdelearn package is available on the TestPyPi repository and can be installed by running

pip install -i https://test.pypi.org/simple/ sdelearn

How to create a sdelearn class?

The sdelearn class is the main class containing the information about a SDE. Conceptually the information required to describe SDEs can be divided in three groups: model, sampling and data. A sdelearn class is thus based on three dedicated subclasses, SdeModel, SdeSampling and SdeData, containing information about the model, the sampling structure and the observed data respectively. First these three classes must be created:

  • SdeModel: contains information about the Sde model, in particular the "actual" Sde formula. It is assumed to be a parametric model, i.e. the functional form of the model is known up to some parameters. In order to construct this class user is required to supply two functions, a drift function (drift) and a diffusion function (diff); an array-like object mod_shape containing the dimensions of the model of the form [n_var, n_noise], where the first dimension represents the number of variables and the second the number of Gaussian noises; a dictionary par_names with keys "drift" and "diffusion" and with values given by character lists containing all the parameter names appearing in the corresponding drift and diffusion function, e.g. par_names = {"drift": ["par_dr1, "par_dr2"...], "diffusion: ["par_di1, "par_dr2"...] "(this argument is optional and parameter names can be set later using the function set_param); a character list var_names containing variable names, if missing automatically set to x0, x1 ... x[n_var].

    The mode argument controls the way the model is specified. There are two ways to supply the drift and diffusion components of the model: "symbolic" or "functional" mode.

    Symbolic mode. In symbolic mode (mode = 'sym', the default) the drift and diffusion are supplied as lists of sympy expressions, where all the non-constant values, i.e. parameters and state variables, are expressed as sympy symbols. All the mathematical functions used in the expressions have to be imported from sympy, e.g. use sympy.sqrt instead of math.sqrt. The length of the drift list has to match number of variables in the model n_var. Similarly the diff argument has to be a matrix-like object or nested list with length n_var and the length of diff[0] is n_noise. In this case the dimensions of the model and the parameters are inferred from the expressions and it is not necessary to specify the par_names and mod_shape arguments. The variable names are required or assumed to be x0, x1 ... x[n_var].

    Function mode. This is be specified by mode='fun'. The drift function must be a vector valued function, taking as input two arguments: the state value and the parameters. The input state should be a numeric vector or list, the parameters should be a dictionary. The value returned by this function must match the number of variables n_var in the model. Similarly, the diffusion function of the model must be supplied as a matrix valued function, which takes as input the current state and a dictionary containing the parameters. The dimensions of the output value of the diffusion function must match the number of variables and noises supplied: i.e. it must be a n_varxn_noise matrix. Drift and diffusion functions can be scalar valued. The parameters must be addressed by name in both these functions, i.e. as keys in a dictionary. Note that names are important here: names used in the drift and diffusion function definitions must be consistent with those supplied as initial values for estimation or simulation (simulate). See the examples for details. As a rule of thumb the models should be supplied as you'd write them with "pen and paper".

  • SdeSampling: it contains information about the temporal sampling of the data. It is constructed by supplying the time of the initial observation initial (typically initial=0), the last observed time terminal and the one between delta, the time span between each pair of observations (assumed constant), or n the number of points in the grid (including endpoints). If delta is given the terminal value might not be matched exactly and will be replaced by the largest value in the grid <= terminal. A time grid corresponding to the observation time is automatically generated;

  • SdeData: it contains empirically observed or simulated data. It should be a data frame where each row corresponds to an observation of the time series. The observation times should match the time grid supplied in the sampling information: that is the number of rows in SdeData.data should be equal to the length of the grid Sdesampling.grid.

Finally, an instance of sdelearn can be created as Sde(model = SdeModel, sampling=SdeSampling, data=SdeData) where the value of each of the three arguments is an instance of the previous classes. The data argument is optional. Data can be added later e.g. by simulation or by using the setData method.

Learning model parameters using a SdeLearner

The parameters of a SDE can be estimated using an object of class SdeLearner. Currently available learners are Qmle and AdaLasso. For evert learner the following functions are available

  • loss: computes the loss function associated with the learner (see specific implementations for details)
  • fit: learns the model parameters by minimizing the loss function
  • predict: estimates the trend of the series on a given set of times
  • gradient, hessian: compute the exact gradient and hessian of the loss function. Available only in symbolic mode, not implemented for LSA based methods.

A learner object is built around a Sde. Some learners (e.g. AdaLasso) require information about an initial estimate. This is provided by supplying a fitted learner as base_estimator when the object is created. Details on the parameters depend on the specific implementation of each learner.

Technical details

This section contains some information about the internal structure of the package (if you are getting unexpected errors this is a good place to start).

  • param: when in mode='fun', typical name for parameter argument of drift and diffusion function. Both functions share the same parameter dictionary, and the full parameter dictionary will be passed to both functions. Parameter names used inside the function will make the difference. Initially, if the par_names argument is left blank, the model is not aware of what the parameters of the models are. They will be inferred when simulation takes place without distinction between drift and diffusion parameters. When the simulate method or an estimation method is called the user will have to supply a truep parameter or a starting parameter for the optimization which will act as a template for the parameter space of the model. Before any estimation takes place the parameter names should be explicitly set.

  • the SdeLearner class is generic ("abstract") and the user should never directly use it but instead they should use one of the subclasses implementing specific methods.

  • in numerical computation the dictionary of parameters is converted to arrays. This arrays must match the order of the parameters in the model. which is drift first then diffusion, in lexicographic order. Fit and loss functions should automatically match the supplied values with the order specified in the model: currently automatic reordering is done for arguments param of the loss function, start and bounds in model fitting. Note that bounds do not have names, so they are assumed to have the same order as start. The ordered list of parameters can be accessed by Sde.model.param.

Examples

A multivariate model.

Functional mode. This is the direct way to approach Sde modeling with sdelearn. Import the sdelearn libray

from sdelearn import *

Define the drift function:

def b(x, param):
    out = [0,0]
    out[0]= param["theta_dr00"] - param["theta_dr01"] * x[0]
    out[1] = param["theta_dr10"] - param["theta_dr11"] * x[1]
    return out

Define the diffusion function:

def A(x, param):
    out = [[0,0],[0,0]]
    out[0][0] = param["theta_di00"] + param["theta_di01"] * x[0]
    out[1][1] = param["theta_di10"] + param["theta_di11"] * x[1]
    out[1][0] = 0
    out[0][1] = 0
    return out

Create the Sde object, specifying the parameters used in the drift and diffusion functions

par_names = {"drift": ["theta_dr00", "theta_dr01", "theta_dr10", "theta_dr11"],
             "diffusion": ["theta_di00", "theta_di01", "theta_di10", "theta_di11"]}

sde = Sde(sampling=SdeSampling(initial=0, terminal=2, delta=0.01),
          model=SdeModel(b, A, mod_shape=[2, 2], par_names=par_names, mode='fun'))

print(sde)

Set the true value of the parameter and simulate a sample path of the process:

truep = {"theta.dr00": 0, "theta.dr01": -0.5, "theta.dr10": 0, "theta.dr11": -0.5, "theta.di00": 0, "theta.di01": 1, "theta.di10": 0, "theta.di11": 1}
sde.simulate(truep=truep, x0=[1, 2])

Plot the simulated path:

sde.plot()

Fit the model using a quasi-maximum-likelihood estimator:

qmle = Qmle(sde)
startp = dict(zip([p for k in par_names.keys() for p in par_names.get(k)],
                  np.round(np.abs(np.random.randn(len(par_names))), 1)))
qmle.fit(startp, method='BFGS')

See the results: estimated parameter, its variance covariance matrix and information about the optimization process

qmle.est
qmle.vcov
qmle.optim_info

Compute and show predictions (estimated trend)

qmle.predict().plot()

Symbolic mode.

from sdelearner import *
import numpy as np
import sympy as sym

Create symbols and define the drift vector and diffusion matrix.

n_var = 2
theta_dr = [sym.symbols('theta_dr{0}{1}'.format(i, j)) for i in range(n_var) for j in range(2)]
theta_di = [sym.symbols('theta_di{0}{1}'.format(i, j)) for i in range(n_var) for j in range(2)]

all_param = theta_dr + theta_di
state_var = [sym.symbols('x{0}'.format(i)) for i in range(n_var)]

b_expr = np.array([theta_dr[2*i] - theta_dr[2*i+1] * state_var[i] for i in range(n_var)])

A_expr = np.full((n_var,n_var), sym.sympify('0'))
np.fill_diagonal(A_expr, [theta_di[2*i] + theta_di[2*i+1] * state_var[i] for i in range(n_var)])

Instanciate the Sde. Note that in this case it is not necessary to specify par_names while mode='sym is the default.

sde = Sde(sampling=SdeSampling(initial=0, terminal=20, delta=0.01),
          model=SdeModel(b_expr, A_expr, state_var=[s.name for s in state_var]))
print(sde)

Fix some paramter value and simulate:

truep = dict(zip([s.name for s in all_param], np.round(np.abs(np.random.randn(len(all_param))), 1)))
sde.simulate(truep=truep, x0=np.arange(n_var))

sde.plot()

Fit the data using qmle, specifying box-constraints for the optimization

qmle = Qmle(sde)
startp = dict(zip([s.name for s in all_param], np.round(np.abs(np.random.randn(len(all_param))), 1)))
box_width = 10
bounds = [(-0.5*box_width, 0.5*box_width)]*len(all_param) + np.random.rand(len(all_param)*2).reshape(len(all_param), 2)


qmle.fit(start=startp, method='L-BFGS-B', bounds = bounds)
qmle.est
qmle.optim_info

Fit the parameters using adaptive lasso and qmle as initial estimator. Set a delta > 0 value to use adaptive weights, additionally use the weights argument to apply a specific penalty to each parameter.

lasso = AdaLasso(sde, qmle, delta=1, start=startp)
lasso.lambda_max
lasso.penalty
lasso.fit()

By default no lambda value is chosen and the full path of estimates is computed:

lasso.est_path
lasso.plot()

In order to choose a penalization value fit using last 10% obs as validation set (optimal lambda minimizes validation loss):

lasso.fit(cv=0.1)

In this case the estimate corresponding to optimal lambda is computed:

lasso.est
lasso.vcov
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

149 Dec 15, 2022
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
Tightness-aware Evaluation Protocol for Scene Text Detection

TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval

Yuliang Liu 206 Nov 18, 2022
PyTorch reimplementation of minimal-hand (CVPR2020)

Minimal Hand Pytorch Unofficial PyTorch reimplementation of minimal-hand (CVPR2020). you can also find in youtube or bilibili bare hand youtube or bil

Hao Meng 228 Dec 29, 2022
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 07, 2022
Code for database and frontend of webpage for Neural Fields in Visual Computing and Beyond.

Neural Fields in Visual Computing—Complementary Webpage This is based on the amazing MiniConf project from Hendrik Strobelt and Sasha Rush—thank you!

Brown University Visual Computing Group 29 Nov 30, 2022
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear

Simon Blanke 422 Jan 04, 2023
Code for SALT: Stackelberg Adversarial Regularization, EMNLP 2021.

SALT: Stackelberg Adversarial Regularization Code for Adversarial Regularization as Stackelberg Game: An Unrolled Optimization Approach, EMNLP 2021. R

Simiao Zuo 10 Jan 10, 2022
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

Facebook Research 721 Jan 03, 2023
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
Probabilistic Programming and Statistical Inference in PyTorch

PtStat Probabilistic Programming and Statistical Inference in PyTorch. Introduction This project is being developed during my time at Cogent Labs. The

Stefano Peluchetti 109 Nov 26, 2022
EXplainable Artificial Intelligence (XAI)

EXplainable Artificial Intelligence (XAI) This repository includes the codes for different projects on eXplainable Artificial Intelligence (XAI) by th

4 Nov 28, 2022
IsoGCN code for ICLR2021

IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N

horiem 39 Nov 25, 2022
Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Dangers of Bayesian Model Averaging under Covariate Shift This repository contains the code to reproduce the experiments in the paper Dangers of Bayes

Pavel Izmailov 25 Sep 21, 2022
《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020.

41 Oct 27, 2022