Official Implementation for the "An Empirical Investigation of 3D Anomaly Detection and Segmentation" paper.

Overview

An Empirical Investigation of 3D Anomaly Detection and Segmentation

Project | Paper

PWC

PWC

PWC

Official PyTorch Implementation for the "An Empirical Investigation of 3D Anomaly Detection and Segmentation" paper.


An Empirical Investigation of 3D Anomaly Detection and Segmentation
Eliahu Horwitz, Yedid Hoshen
https://arxiv.org/abs/2203.05550

Abstract: Anomaly detection and segmentation (AD&S) in images has made tremendous progress in recent years while 3D information has often been ignored. The objective of this paper is to further understand the benefit and role of 3D as apposed to color in image anomaly detection. Our study begins by presenting a surprising finding: standard color-only anomaly segmentation methods, when applied to 3D datasets, significantly outperform all current methods. On the other hand, we observe that color-only methods are insufficient for images containing geometric anomalies where shape cannot be unambiguously inferred from 2D. This suggests that better 3D methods are needed. We investigate different representations for 3D anomaly detection and discover that hand-crafted orientation-invariant representations are unreasonably effective on this task. We uncover a simple 3D-only method that outperforms all recent approaches while not using deep learning, external pretraining datasets or color information. As the 3D-only method cannot detect color and texture anomalies, we combine it with 2D color features, granting us the best current results by a large margin (pixel ROCAUC: 99.2%, PRO: 95.9% on MVTec 3D-AD). We conclude by discussing future challenges for 3D anomaly detection and segmentation.

Getting Started

Setup

  1. Clone the repo:
git clone https://github.com/eliahuhorwitz/3D-ADS.git
cd 3D-ADS
  1. Create a new environment and install the libraries:
python3.7 -m venv 3d_ads_venv
source 3d_ads_venv/bin/activate
pip install -r requirements.txt
  1. Download and extract the dataset
mkdir datasets && cd datasets
mkdir mvtec3d && cd mvtec3d
wget https://www.mydrive.ch/shares/45920/dd1eb345346df066c63b5c95676b961b/download/428824485-1643285832/mvtec_3d_anomaly_detection.tar.xz
tar -xvf mvtec_3d_anomaly_detection.tar.xz


Training

We provide the implementations for 7 methods investigated in the paper. These are:

  • RGB iNet
  • Depth iNet
  • Raw
  • HoG
  • SIFT
  • FPFH
  • RGB + FPFH

To run all methods on all 10 classes and save the PRO, Image ROCAUC, Pixel ROCAUC results to markdown tables run

python3 main.py

To change which classes are used, see mvtec3d_classes located at data/mvtec3d.py.
To change which methods are used, see the PatchCore constructor located at patchcore_runner.py and the METHOD_NAMES variable located at main.py.

Note: The results below are of the raw dataset, see the preprocessing section for the preprocessing code and results (as seen in the paper). Note: The pixel-wise metrics benefit from preprocessing. As such, the unprocessed results are slightly below the ones reported in the paper.

AU PRO Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.898 0.948 0.927 0.872 0.927 0.555 0.902 0.931 0.903 0.899 0.876
Depth iNet 0.701 0.544 0.791 0.835 0.531 0.100 0.800 0.549 0.827 0.185 0.586
Raw 0.040 0.047 0.433 0.080 0.283 0.099 0.035 0.168 0.631 0.093 0.191
HoG 0.518 0.609 0.857 0.342 0.667 0.340 0.476 0.893 0.700 0.739 0.614
SIFT 0.894 0.722 0.963 0.871 0.926 0.613 0.870 0.973 0.958 0.873 0.866
FPFH 0.972 0.849 0.981 0.939 0.963 0.693 0.975 0.981 0.980 0.949 0.928
RGB + FPFH 0.976 0.967 0.979 0.974 0.971 0.884 0.976 0.981 0.959 0.971 0.964

Image ROCAUC Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.854 0.840 0.824 0.687 0.974 0.716 0.713 0.593 0.920 0.724 0.785
Depth iNet 0.624 0.683 0.676 0.838 0.608 0.558 0.567 0.496 0.699 0.619 0.637
Raw 0.578 0.732 0.444 0.798 0.579 0.537 0.347 0.306 0.439 0.517 0.528
HoG 0.560 0.615 0.676 0.491 0.598 0.489 0.542 0.553 0.655 0.423 0.560
SIFT 0.696 0.553 0.824 0.696 0.795 0.773 0.573 0.746 0.936 0.553 0.714
FPFH 0.820 0.533 0.877 0.769 0.718 0.574 0.774 0.895 0.990 0.582 0.753
RGB + FPFH 0.938 0.765 0.972 0.888 0.960 0.664 0.904 0.929 0.982 0.726 0.873

Pixel ROCAUC Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.983 0.984 0.980 0.974 0.985 0.836 0.976 0.982 0.989 0.975 0.966
Depth iNet 0.941 0.759 0.933 0.946 0.829 0.518 0.939 0.743 0.974 0.632 0.821
Raw 0.404 0.306 0.772 0.457 0.641 0.478 0.354 0.602 0.905 0.558 0.548
HoG 0.782 0.846 0.965 0.684 0.848 0.741 0.779 0.973 0.926 0.903 0.845
SIFT 0.974 0.862 0.993 0.952 0.980 0.862 0.955 0.996 0.993 0.971 0.954
FPFH 0.995 0.955 0.998 0.971 0.993 0.911 0.995 0.999 0.998 0.988 0.980
RGB + FPFH 0.996 0.991 0.997 0.995 0.995 0.972 0.996 0.998 0.995 0.994 0.993



Preprocessing

As mentioned in the paper, the results reported use the preprocessed dataset.
While this preprocessing helps in cases where depth images are used, when using the point cloud the results are less pronounced.
It may take a few hours to run the preprocessing. Results for the preprocessed dataset are reported below.

To run the preprocessing

python3 utils/preprocessing.py datasets/mvtec3d/

Note: the preprocessing is performed inplace (i.e. overriding the original dataset)

Preprocessed AU PRO Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.902 0.948 0.929 0.873 0.891 0.570 0.903 0.933 0.909 0.905 0.876
Depth iNet 0.763 0.676 0.884 0.883 0.864 0.322 0.881 0.840 0.844 0.634 0.759
Raw 0.402 0.314 0.639 0.498 0.251 0.259 0.527 0.531 0.808 0.215 0.444
HoG 0.712 0.761 0.932 0.487 0.833 0.520 0.743 0.949 0.916 0.858 0.771
SIFT 0.944 0.845 0.975 0.894 0.909 0.733 0.946 0.981 0.953 0.928 0.911
FPFH 0.974 0.878 0.982 0.908 0.892 0.730 0.977 0.982 0.956 0.962 0.924
RGB + FPFH 0.976 0.968 0.979 0.972 0.932 0.884 0.975 0.981 0.950 0.972 0.959

Preprocessed Image ROCAUC Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.875 0.880 0.777 0.705 0.938 0.720 0.718 0.615 0.859 0.681 0.777
Depth iNet 0.690 0.597 0.753 0.862 0.881 0.590 0.597 0.598 0.791 0.577 0.694
Raw 0.627 0.507 0.600 0.654 0.573 0.524 0.532 0.612 0.412 0.678 0.572
HoG 0.487 0.587 0.691 0.545 0.643 0.596 0.516 0.584 0.507 0.430 0.559
SIFT 0.722 0.640 0.892 0.762 0.829 0.678 0.623 0.754 0.767 0.603 0.727
FPFH 0.825 0.534 0.952 0.783 0.883 0.581 0.758 0.889 0.929 0.656 0.779
RGB + FPFH 0.923 0.770 0.967 0.905 0.928 0.657 0.913 0.915 0.921 0.881 0.878

Preprocessed Pixel ROCAUC Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.983 0.984 0.98 0.974 0.973 0.851 0.976 0.983 0.987 0.977 0.967
Depth iNet 0.957 0.901 0.966 0.970 0.967 0.771 0.971 0.949 0.977 0.891 0.932
Raw 0.803 0.750 0.849 0.801 0.610 0.696 0.830 0.772 0.951 0.670 0.773
HoG 0.911 0.933 0.985 0.823 0.936 0.862 0.923 0.987 0.980 0.955 0.930
SIFT 0.986 0.957 0.996 0.952 0.967 0.921 0.986 0.998 0.994 0.983 0.974
FPFH 0.995 0.965 0.999 0.947 0.966 0.928 0.996 0.999 0.996 0.991 0.978
RGB + FPFH 0.996 0.992 0.997 0.994 0.981 0.973 0.996 0.998 0.994 0.995 0.992



Citation

If you find this repository useful for your research, please use the following.

@misc{2203.05550,
Author = {Eliahu Horwitz and Yedid Hoshen},
Title = {An Empirical Investigation of 3D Anomaly Detection and Segmentation},
Year = {2022},
Eprint = {arXiv:2203.05550},

Acknowledgments

[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 09, 2023
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022
Software Platform for solving and manipulating multiparametric programs in Python

PPOPT Python Parametric OPtimization Toolbox (PPOPT) is a software platform for solving and manipulating multiparametric programs in Python. This pack

10 Sep 13, 2022
AdamW optimizer and cosine learning rate annealing with restarts

AdamW optimizer and cosine learning rate annealing with restarts This repository contains an implementation of AdamW optimization algorithm and cosine

Maksym Pyrozhok 133 Dec 20, 2022
A Dataset of Python Challenges for AI Research

Python Programming Puzzles (P3) This repo contains a dataset of python programming puzzles which can be used to teach and evaluate an AI's programming

Microsoft 850 Dec 24, 2022
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023
Analysis of Smiles through reservoir sampling & RDkit

Analysis of Smiles through reservoir sampling and machine learning (under development). This is a simple project that includes two Jupyter files for t

Aurimas A. Nausėdas 6 Aug 30, 2022
OptaPlanner wrappers for Python. Currently significantly slower than OptaPlanner in Java or Kotlin.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 211 Jan 02, 2023
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

574 Jan 02, 2023
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP Russian Diffusio

AI Forever 232 Jan 04, 2023
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/

Casual GAN Papers 259 Dec 28, 2022
git《USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation》(2020) GitHub: [fig2]

USD-Seg This project is an implement of paper USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation, based on FCOS detector f

Ruolin Ye 80 Nov 28, 2022
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

FaceAPI AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using

Vladimir Mandic 395 Dec 29, 2022
百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline

项目说明: 百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline 比赛链接:https://aistudio.baidu.com/aistudio/competition/detail/66?isFromLuge=true 官方的baseline版本是基于paddlepadd

周俊贤 54 Nov 23, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022
The Environment I built to study Reinforcement Learning + Pokemon Showdown

pokemon-showdown-rl-environment The Environment I built to study Reinforcement Learning + Pokemon Showdown Been a while since I ran this. Think it is

3 Jan 16, 2022