Official Implementation for the "An Empirical Investigation of 3D Anomaly Detection and Segmentation" paper.

Overview

An Empirical Investigation of 3D Anomaly Detection and Segmentation

Project | Paper

PWC

PWC

PWC

Official PyTorch Implementation for the "An Empirical Investigation of 3D Anomaly Detection and Segmentation" paper.


An Empirical Investigation of 3D Anomaly Detection and Segmentation
Eliahu Horwitz, Yedid Hoshen
https://arxiv.org/abs/2203.05550

Abstract: Anomaly detection and segmentation (AD&S) in images has made tremendous progress in recent years while 3D information has often been ignored. The objective of this paper is to further understand the benefit and role of 3D as apposed to color in image anomaly detection. Our study begins by presenting a surprising finding: standard color-only anomaly segmentation methods, when applied to 3D datasets, significantly outperform all current methods. On the other hand, we observe that color-only methods are insufficient for images containing geometric anomalies where shape cannot be unambiguously inferred from 2D. This suggests that better 3D methods are needed. We investigate different representations for 3D anomaly detection and discover that hand-crafted orientation-invariant representations are unreasonably effective on this task. We uncover a simple 3D-only method that outperforms all recent approaches while not using deep learning, external pretraining datasets or color information. As the 3D-only method cannot detect color and texture anomalies, we combine it with 2D color features, granting us the best current results by a large margin (pixel ROCAUC: 99.2%, PRO: 95.9% on MVTec 3D-AD). We conclude by discussing future challenges for 3D anomaly detection and segmentation.

Getting Started

Setup

  1. Clone the repo:
git clone https://github.com/eliahuhorwitz/3D-ADS.git
cd 3D-ADS
  1. Create a new environment and install the libraries:
python3.7 -m venv 3d_ads_venv
source 3d_ads_venv/bin/activate
pip install -r requirements.txt
  1. Download and extract the dataset
mkdir datasets && cd datasets
mkdir mvtec3d && cd mvtec3d
wget https://www.mydrive.ch/shares/45920/dd1eb345346df066c63b5c95676b961b/download/428824485-1643285832/mvtec_3d_anomaly_detection.tar.xz
tar -xvf mvtec_3d_anomaly_detection.tar.xz


Training

We provide the implementations for 7 methods investigated in the paper. These are:

  • RGB iNet
  • Depth iNet
  • Raw
  • HoG
  • SIFT
  • FPFH
  • RGB + FPFH

To run all methods on all 10 classes and save the PRO, Image ROCAUC, Pixel ROCAUC results to markdown tables run

python3 main.py

To change which classes are used, see mvtec3d_classes located at data/mvtec3d.py.
To change which methods are used, see the PatchCore constructor located at patchcore_runner.py and the METHOD_NAMES variable located at main.py.

Note: The results below are of the raw dataset, see the preprocessing section for the preprocessing code and results (as seen in the paper). Note: The pixel-wise metrics benefit from preprocessing. As such, the unprocessed results are slightly below the ones reported in the paper.

AU PRO Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.898 0.948 0.927 0.872 0.927 0.555 0.902 0.931 0.903 0.899 0.876
Depth iNet 0.701 0.544 0.791 0.835 0.531 0.100 0.800 0.549 0.827 0.185 0.586
Raw 0.040 0.047 0.433 0.080 0.283 0.099 0.035 0.168 0.631 0.093 0.191
HoG 0.518 0.609 0.857 0.342 0.667 0.340 0.476 0.893 0.700 0.739 0.614
SIFT 0.894 0.722 0.963 0.871 0.926 0.613 0.870 0.973 0.958 0.873 0.866
FPFH 0.972 0.849 0.981 0.939 0.963 0.693 0.975 0.981 0.980 0.949 0.928
RGB + FPFH 0.976 0.967 0.979 0.974 0.971 0.884 0.976 0.981 0.959 0.971 0.964

Image ROCAUC Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.854 0.840 0.824 0.687 0.974 0.716 0.713 0.593 0.920 0.724 0.785
Depth iNet 0.624 0.683 0.676 0.838 0.608 0.558 0.567 0.496 0.699 0.619 0.637
Raw 0.578 0.732 0.444 0.798 0.579 0.537 0.347 0.306 0.439 0.517 0.528
HoG 0.560 0.615 0.676 0.491 0.598 0.489 0.542 0.553 0.655 0.423 0.560
SIFT 0.696 0.553 0.824 0.696 0.795 0.773 0.573 0.746 0.936 0.553 0.714
FPFH 0.820 0.533 0.877 0.769 0.718 0.574 0.774 0.895 0.990 0.582 0.753
RGB + FPFH 0.938 0.765 0.972 0.888 0.960 0.664 0.904 0.929 0.982 0.726 0.873

Pixel ROCAUC Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.983 0.984 0.980 0.974 0.985 0.836 0.976 0.982 0.989 0.975 0.966
Depth iNet 0.941 0.759 0.933 0.946 0.829 0.518 0.939 0.743 0.974 0.632 0.821
Raw 0.404 0.306 0.772 0.457 0.641 0.478 0.354 0.602 0.905 0.558 0.548
HoG 0.782 0.846 0.965 0.684 0.848 0.741 0.779 0.973 0.926 0.903 0.845
SIFT 0.974 0.862 0.993 0.952 0.980 0.862 0.955 0.996 0.993 0.971 0.954
FPFH 0.995 0.955 0.998 0.971 0.993 0.911 0.995 0.999 0.998 0.988 0.980
RGB + FPFH 0.996 0.991 0.997 0.995 0.995 0.972 0.996 0.998 0.995 0.994 0.993



Preprocessing

As mentioned in the paper, the results reported use the preprocessed dataset.
While this preprocessing helps in cases where depth images are used, when using the point cloud the results are less pronounced.
It may take a few hours to run the preprocessing. Results for the preprocessed dataset are reported below.

To run the preprocessing

python3 utils/preprocessing.py datasets/mvtec3d/

Note: the preprocessing is performed inplace (i.e. overriding the original dataset)

Preprocessed AU PRO Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.902 0.948 0.929 0.873 0.891 0.570 0.903 0.933 0.909 0.905 0.876
Depth iNet 0.763 0.676 0.884 0.883 0.864 0.322 0.881 0.840 0.844 0.634 0.759
Raw 0.402 0.314 0.639 0.498 0.251 0.259 0.527 0.531 0.808 0.215 0.444
HoG 0.712 0.761 0.932 0.487 0.833 0.520 0.743 0.949 0.916 0.858 0.771
SIFT 0.944 0.845 0.975 0.894 0.909 0.733 0.946 0.981 0.953 0.928 0.911
FPFH 0.974 0.878 0.982 0.908 0.892 0.730 0.977 0.982 0.956 0.962 0.924
RGB + FPFH 0.976 0.968 0.979 0.972 0.932 0.884 0.975 0.981 0.950 0.972 0.959

Preprocessed Image ROCAUC Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.875 0.880 0.777 0.705 0.938 0.720 0.718 0.615 0.859 0.681 0.777
Depth iNet 0.690 0.597 0.753 0.862 0.881 0.590 0.597 0.598 0.791 0.577 0.694
Raw 0.627 0.507 0.600 0.654 0.573 0.524 0.532 0.612 0.412 0.678 0.572
HoG 0.487 0.587 0.691 0.545 0.643 0.596 0.516 0.584 0.507 0.430 0.559
SIFT 0.722 0.640 0.892 0.762 0.829 0.678 0.623 0.754 0.767 0.603 0.727
FPFH 0.825 0.534 0.952 0.783 0.883 0.581 0.758 0.889 0.929 0.656 0.779
RGB + FPFH 0.923 0.770 0.967 0.905 0.928 0.657 0.913 0.915 0.921 0.881 0.878

Preprocessed Pixel ROCAUC Results

Method Bagel Cable
Gland
Carrot Cookie Dowel Foam Peach Potato Rope Tire Mean
RGB iNet 0.983 0.984 0.98 0.974 0.973 0.851 0.976 0.983 0.987 0.977 0.967
Depth iNet 0.957 0.901 0.966 0.970 0.967 0.771 0.971 0.949 0.977 0.891 0.932
Raw 0.803 0.750 0.849 0.801 0.610 0.696 0.830 0.772 0.951 0.670 0.773
HoG 0.911 0.933 0.985 0.823 0.936 0.862 0.923 0.987 0.980 0.955 0.930
SIFT 0.986 0.957 0.996 0.952 0.967 0.921 0.986 0.998 0.994 0.983 0.974
FPFH 0.995 0.965 0.999 0.947 0.966 0.928 0.996 0.999 0.996 0.991 0.978
RGB + FPFH 0.996 0.992 0.997 0.994 0.981 0.973 0.996 0.998 0.994 0.995 0.992



Citation

If you find this repository useful for your research, please use the following.

@misc{2203.05550,
Author = {Eliahu Horwitz and Yedid Hoshen},
Title = {An Empirical Investigation of 3D Anomaly Detection and Segmentation},
Year = {2022},
Eprint = {arXiv:2203.05550},

Acknowledgments

Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

Benedek Rozemberczki 303 Dec 09, 2022
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding his way.

GuidEye A python software that can help blind people find things like laptops, phones, etc the same way a guide dog guides a blind person in finding h

Munal Jain 0 Aug 09, 2022
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
Social Network Ads Prediction

Social network advertising, also social media targeting, is a group of terms that are used to describe forms of online advertising that focus on social networking services.

Khazar 2 Jan 28, 2022
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023
Code repository for "Reducing Underflow in Mixed Precision Training by Gradient Scaling" presented at IJCAI '20

Reducing Underflow in Mixed Precision Training by Gradient Scaling This project implements the gradient scaling method to improve the performance of m

Ruizhe Zhao 5 Apr 14, 2022
Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding

The Hypersim Dataset For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real i

Apple 1.3k Jan 04, 2023
Transformer in Vision

Transformer-in-Vision Recent Transformer-based CV and related works. Welcome to comment/contribute! Keep updated. Resource SCENIC: A JAX Library for C

Yong-Lu Li 1.1k Dec 30, 2022
Project NII pytorch scripts

project-NII-pytorch-scripts By Xin Wang, National Institute of Informatics, since 2021 I am a new pytorch user. If you have any suggestions or questio

Yamagishi and Echizen Laboratories, National Institute of Informatics 184 Dec 23, 2022
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
Array Camera Ptychography

Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li

Brady lab in Optical Sciences 1 Nov 15, 2021
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
PyTorch implementation of the paper The Lottery Ticket Hypothesis for Object Recognition

LTH-ObjectRecognition The Lottery Ticket Hypothesis for Object Recognition Sharath Girish*, Shishira R Maiya*, Kamal Gupta, Hao Chen, Larry Davis, Abh

16 Feb 06, 2022
Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch

Bootstrap Your Own Latent (BYOL), in Pytorch Practical implementation of an astoundingly simple method for self-supervised learning that achieves a ne

Phil Wang 1.4k Dec 29, 2022
Tensorflow implementation of soft-attention mechanism for video caption generation.

SA-tensorflow Tensorflow implementation of soft-attention mechanism for video caption generation. An example of soft-attention mechanism. The attentio

Paul Chen 153 Nov 14, 2022