Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

Overview

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

by Lukas Hoyer, Dengxin Dai, and Luc Van Gool

[Arxiv] [Paper]

Overview

Unsupervised domain adaptation (UDA) aims to adapt a model trained on synthetic data to real-world data without requiring expensive annotations of real-world images. As UDA methods for semantic segmentation are usually GPU memory intensive, most previous methods operate only on downscaled images. We question this design as low-resolution predictions often fail to preserve fine details. The alternative of training with random crops of high-resolution images alleviates this problem but falls short in capturing long-range, domain-robust context information.

Therefore, we propose HRDA, a multi-resolution training approach for UDA, that combines the strengths of small high-resolution crops to preserve fine segmentation details and large low-resolution crops to capture long-range context dependencies with a learned scale attention, while maintaining a manageable GPU memory footprint.

HRDA Overview

HRDA enables adapting small objects and preserving fine segmentation details. It significantly improves the state-of-the-art performance by 5.5 mIoU for GTA→Cityscapes and by 4.9 mIoU for Synthia→Cityscapes, resulting in an unprecedented performance of 73.8 and 65.8 mIoU, respectively.

UDA over time

The more detailed domain-adaptive semantic segmentation of HRDA, compared to the previous state-of-the-art UDA method DAFormer, can also be observed in example predictions from the Cityscapes validation set.

Demo Color Palette

For more information on HRDA, please check our [Paper].

If you find HRDA useful in your research, please consider citing:

@Article{hoyer2022hrda,
  title={{HRDA}: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation},
  author={Hoyer, Lukas and Dai, Dengxin and Van Gool, Luc},
  journal={arXiv preprint arXiv:2204.13132},
  year={2022}
}

Setup Environment

For this project, we used python 3.8.5. We recommend setting up a new virtual environment:

python -m venv ~/venv/hrda
source ~/venv/hrda/bin/activate

In that environment, the requirements can be installed with:

pip install -r requirements.txt -f https://download.pytorch.org/whl/torch_stable.html
pip install mmcv-full==1.3.7  # requires the other packages to be installed first

Further, please download the MiT weights from SegFormer using the following script. If problems occur with the automatic download, please follow the instructions for a manual download within the script.

sh tools/download_checkpoints.sh

Setup Datasets

Cityscapes: Please, download leftImg8bit_trainvaltest.zip and gt_trainvaltest.zip from here and extract them to data/cityscapes.

GTA: Please, download all image and label packages from here and extract them to data/gta.

Synthia: Please, download SYNTHIA-RAND-CITYSCAPES from here and extract it to data/synthia.

The final folder structure should look like this:

DAFormer
├── ...
├── data
│   ├── cityscapes
│   │   ├── leftImg8bit
│   │   │   ├── train
│   │   │   ├── val
│   │   ├── gtFine
│   │   │   ├── train
│   │   │   ├── val
│   ├── gta
│   │   ├── images
│   │   ├── labels
│   ├── synthia
│   │   ├── RGB
│   │   ├── GT
│   │   │   ├── LABELS
├── ...

Data Preprocessing: Finally, please run the following scripts to convert the label IDs to the train IDs and to generate the class index for RCS:

python tools/convert_datasets/gta.py data/gta --nproc 8
python tools/convert_datasets/cityscapes.py data/cityscapes --nproc 8
python tools/convert_datasets/synthia.py data/synthia/ --nproc 8

Testing & Predictions

The provided HRDA checkpoint trained on GTA->Cityscapes (already downloaded by tools/download_checkpoints.sh) can be tested on the Cityscapes validation set using:

sh test.sh work_dirs/gtaHR2csHR_hrda_246ef

The predictions are saved for inspection to work_dirs/gtaHR2csHR_hrda_246ef/preds and the mIoU of the model is printed to the console. The provided checkpoint should achieve 73.79 mIoU. Refer to the end of work_dirs/gtaHR2csHR_hrda_246ef/20220215_002056.log for more information such as the class-wise IoU.

If you want to visualize the LR predictions, HR predictions, or scale attentions of HRDA on the validation set, please refer to test.sh for further instructions.

Training

For convenience, we provide an annotated config file of the final HRDA. A training job can be launched using:

python run_experiments.py --config configs/hrda/gtaHR2csHR_hrda.py

The logs and checkpoints are stored in work_dirs/.

For the other experiments in our paper, we use a script to automatically generate and train the configs:

python run_experiments.py --exp <ID>

More information about the available experiments and their assigned IDs, can be found in experiments.py. The generated configs will be stored in configs/generated/.

When training a model on Synthia->Cityscapes, please note that the evaluation script calculates the mIoU for all 19 Cityscapes classes. However, Synthia contains only labels for 16 of these classes. Therefore, it is a common practice in UDA to report the mIoU for Synthia->Cityscapes only on these 16 classes. As the Iou for the 3 missing classes is 0, you can do the conversion mIoU16 = mIoU19 * 19 / 16.

Framework Structure

This project is based on mmsegmentation version 0.16.0. For more information about the framework structure and the config system, please refer to the mmsegmentation documentation and the mmcv documentation.

The most relevant files for HRDA are:

Acknowledgements

HRDA is based on the following open-source projects. We thank their authors for making the source code publicly available.

Owner
Lukas Hoyer
Doctoral student at ETH Zurich
Lukas Hoyer
Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

SSL_OSC Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

zaixizhang 2 May 14, 2022
TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet

Keras implementation of PSPNet(caffe) Implemented Architecture of Pyramid Scene Parsing Network in Keras. For the best compability please use Python3.

VladKry 386 Dec 29, 2022
PyTorch Implementation of the paper Learning to Reweight Examples for Robust Deep Learning

Learning to Reweight Examples for Robust Deep Learning Unofficial PyTorch implementation of Learning to Reweight Examples for Robust Deep Learning. Th

Daniel Stanley Tan 325 Dec 28, 2022
A minimal implementation of Gaussian process regression in PyTorch

pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b

Sangwoong Yoon 38 Nov 25, 2022
MoveNet Single Pose on OpenVINO

MoveNet Single Pose tracking on OpenVINO Running Google MoveNet Single Pose models on OpenVINO. A convolutional neural network model that runs on RGB

35 Nov 11, 2022
A deep learning CNN model to identify and classify and check if a person is wearing a mask or not.

Face Mask Detection The Model is designed to check if any human is wearing a mask or not. Dataset Description The Dataset contains a total of 11,792 i

1 Mar 01, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

21 Jul 30, 2022
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022
TensorFlow tutorials and best practices.

Effective TensorFlow 2 Table of Contents Part I: TensorFlow 2 Fundamentals TensorFlow 2 Basics Broadcasting the good and the ugly Take advantage of th

Vahid Kazemi 8.7k Dec 31, 2022
Code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition"

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Arun 92 Dec 03, 2022
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Google Cloud Platform 792 Dec 28, 2022
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Official code of Retinal Vessel Segmentation with Pixel-wise Adaptive Filters and Consistency Training (ISBI 2022)

anonymous 14 Oct 27, 2022
PyTorch implementation of Self-supervised Contrastive Regularization for DG (SelfReg)

SelfReg PyTorch official implementation of Self-supervised Contrastive Regularization for Domain Generalization (SelfReg, https://arxiv.org/abs/2104.0

64 Dec 16, 2022
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds The why Im

3 Mar 29, 2022
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022