Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

Overview

PWC PWC PWC PWC

TDEER 🦌 🦒

Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

Overview

TDEER is an efficient model for joint extraction of entities and relations. Unlike the common decoding approach that predicts the relation between subject and object, we adopt the proposed translating decoding schema: subject + relation -> objects, to decode triples. By the proposed translating decoding schema, TDEER can handle the overlapping triple problem effectively and efficiently. The following figure is an illustration of our models.

overview

Reproduction Steps

1. Environment

We conducted experiments under python3.7 and used GPUs device to accelerate computing.

You should first prepare the tensorflow version in terms of your GPU environment. For tensorflow version, we recommend tensorflow-gpu==1.15.0.

Then, you can install the other required dependencies by the following script.

pip install -r requirements.txt

2. Prepare Data

We follow weizhepei/CasRel to prepare datas.

For convenience, we have uploaded our processed data in this repository via git-lfs. To use the processed data, you could download the data and decompress it (data.zip) into the data folder.

3. Download Pretrained BERT

Click 👉 BERT-Base-Cased to download the pretrained model and then decompress to pretrained-bert folder.

4. Train & Eval

You can use run.py with --do_train to train the model. After training, you can also use run.py with --do_test to evaluate data.

Our training and evaluating commands are as follows:

1. NYT

train:

CUDA_VISIBLE_DEVICES=0 nohup python -u run.py \
--do_train \
--model_name NYT \
--rel_path data/NYT/rel2id.json \
--train_path data/NYT/train_triples.json \
--dev_path data/NYT/test_triples.json \
--bert_dir pretrained-bert/cased_L-12_H-768_A-12 \
--save_path ckpts/nyt.model \
--learning_rate 0.00005 \
--neg_samples 2 \
--epoch 200 \
--verbose 2 > nyt.log &

evaluate:

CUDA_VISIBLE_DEVICES=0 python run.py \
--do_test \
--model_name NYT \
--rel_path data/NYT/rel2id.json \
--test_path data/NYT/test_triples.json \
--bert_dir pretrained-bert/cased_L-12_H-768_A-12 \
--ckpt_path ckpts/nyt.model \
--max_len 512 \
--verbose 1

You can evaluate other data by specifying --test_path.

2. WebNLG

train:

CUDA_VISIBLE_DEVICES=0 nohup python -u run.py \
--do_train \
--model_name WebNLG \
--rel_path data/WebNLG/rel2id.json \
--train_path data/WebNLG/train_triples.json \
--dev_path data/WebNLG/test_triples.json \
--bert_dir pretrained-bert/cased_L-12_H-768_A-12 \
--save_path ckpts/webnlg.model \
--max_sample_triples 5 \
--neg_samples 5 \
--learning_rate 0.00005 \
--epoch 300 \
--verbose 2 > webnlg.log &

evaluate:

CUDA_VISIBLE_DEVICES=0 python run.py \
--do_test \
--model_name WebNLG \
--rel_path data/WebNLG/rel2id.json \
--test_path data/WebNLG/test_triples.json \
--bert_dir pretrained-bert/cased_L-12_H-768_A-12 \
--ckpt_path ckpts/webnlg.model \
--max_len 512 \
--verbose 1

You can evaluate other data by specifying --test_path.

3. NYT11-HRL

train:

CUDA_VISIBLE_DEVICES=0 nohup python -u run.py \
--do_train \
--model_name NYT11-HRL \
--rel_path data/NYT11-HRL/rel2id.json \
--train_path data/NYT11-HRL/train_triples.json \
--dev_path data/NYT11-HRL/test_triples.json \
--bert_dir pretrained-bert/cased_L-12_H-768_A-12 \
--save_path ckpts/nyt11hrl.model \
--learning_rate 0.00005 \
--neg_samples 1 \
--epoch 100 \
--verbose 2 > nyt11hrl.log &

evaluate:

CUDA_VISIBLE_DEVICES=0 python run.py \
--do_test \
--model_name NYT11-HRL \
--rel_path data/NYT/rel2id.json \
--test_path data/NYT11-HRL/test_triples.json \
--bert_dir pretrained-bert/cased_L-12_H-768_A-12 \
--ckpt_path ckpts/nyt11hrl.model \
--max_len 512 \
--verbose 1

Pre-trained Models

We released our pre-trained models for NYT, WebNLG, and NYT11-HRL datasets, and uploaded them to this repository via git-lfs.

You can download pre-trained models and then decompress them (ckpts.zip) to the ckpts folder.

To use the pre-trained models, you need to download our processed datasets and specify --rel_path to our processed rel2id.json.

To evaluate by the pre-trained models, you can use above commands and specify --ckpt_path to specific model.

In our setting, NYT, WebNLG, and NYT11-HRL achieve the best result on Epoch 86, 174, and 23 respectively.

1. NYT

click to show the result screenshot.

2. WebNLG

click to show the result screenshot.

3. NYT11-HRL

click to show the result screenshot.

Citation

If you use our code in your research, please cite our work:

@inproceedings{li-etal-2021-tdeer,
    title = "{TDEER}: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations",
    author = "Li, Xianming  and
      Luo, Xiaotian  and
      Dong, Chenghao  and
      Yang, Daichuan  and
      Luan, Beidi  and
      He, Zhen",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.635",
    pages = "8055--8064",
}

Acknowledgment

Some of our codes are inspired by weizhepei/CasRel. Thanks for their excellent work.

Contact

If you have any questions about the paper or code, you can

  1. create an issue in this repo;
  2. feel free to contact 1st author at [email protected] / [email protected], I will reply ASAP.
Website for D2C paper

D2C This is the repository that contains source code for the D2C Website. If you find D2C useful for your work please cite: @article{sinha2021d2c au

1 Oct 21, 2021
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
Phy-Q: A Benchmark for Physical Reasoning

Phy-Q: A Benchmark for Physical Reasoning Cheng Xue*, Vimukthini Pinto*, Chathura Gamage* Ekaterina Nikonova, Peng Zhang, Jochen Renz School of Comput

29 Dec 19, 2022
This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds

LiDARTag Overview This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds (PDF)(arXiv). This wo

University of Michigan Dynamic Legged Locomotion Robotics Lab 159 Dec 21, 2022
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

ChangShuo 18 Jan 01, 2023
A Lightweight Experiment & Resource Monitoring Tool 📺

Lightweight Experiment & Resource Monitoring 📺 "Did I already run this experiment before? How many resources are currently available on my cluster?"

170 Dec 28, 2022
PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images

wrist-d PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images note: Paper: Under Review at MPDI Diagnostics Submission Date: Novemb

Fatih UYSAL 5 Oct 12, 2022
Scalable Multi-Agent Reinforcement Learning

Scalable Multi-Agent Reinforcement Learning 1. Featured algorithms: Value Function Factorization with Variable Agent Sub-Teams (VAST) [1] 2. Implement

3 Aug 02, 2022
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022
R-package accompanying the paper "Dynamic Factor Model for Functional Time Series: Identification, Estimation, and Prediction"

dffm The goal of dffm is to provide functionality to apply the methods developed in the paper “Dynamic Factor Model for Functional Time Series: Identi

Sven Otto 3 Dec 09, 2022
Code for EMNLP2020 long paper: BERT-Attack: Adversarial Attack Against BERT Using BERT

BERT-ATTACK Code for our EMNLP2020 long paper: BERT-ATTACK: Adversarial Attack Against BERT Using BERT Dependencies Python 3.7 PyTorch 1.4.0 transform

Linyang Li 142 Jan 04, 2023
CS5242_2021 - Neural Networks and Deep Learning, NUS CS5242, 2021

CS5242_2021 Neural Networks and Deep Learning, NUS CS5242, 2021 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : https:/

Xavier Bresson 165 Oct 25, 2022
LRBoost is a scikit-learn compatible approach to performing linear residual based stacking/boosting.

LRBoost is a sckit-learn compatible package for linear residual boosting. LRBoost combines a linear estimator and a non-linear estimator to leverage t

Andrew Patton 5 Nov 23, 2022
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
Official implementation for the paper: Permutation Invariant Graph Generation via Score-Based Generative Modeling

Permutation Invariant Graph Generation via Score-Based Generative Modeling This repo contains the official implementation for the paper Permutation In

64 Dec 29, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Jan 01, 2023