Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

Overview

PWC PWC PWC PWC

TDEER 🦌 🦒

Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

Overview

TDEER is an efficient model for joint extraction of entities and relations. Unlike the common decoding approach that predicts the relation between subject and object, we adopt the proposed translating decoding schema: subject + relation -> objects, to decode triples. By the proposed translating decoding schema, TDEER can handle the overlapping triple problem effectively and efficiently. The following figure is an illustration of our models.

overview

Reproduction Steps

1. Environment

We conducted experiments under python3.7 and used GPUs device to accelerate computing.

You should first prepare the tensorflow version in terms of your GPU environment. For tensorflow version, we recommend tensorflow-gpu==1.15.0.

Then, you can install the other required dependencies by the following script.

pip install -r requirements.txt

2. Prepare Data

We follow weizhepei/CasRel to prepare datas.

For convenience, we have uploaded our processed data in this repository via git-lfs. To use the processed data, you could download the data and decompress it (data.zip) into the data folder.

3. Download Pretrained BERT

Click 👉 BERT-Base-Cased to download the pretrained model and then decompress to pretrained-bert folder.

4. Train & Eval

You can use run.py with --do_train to train the model. After training, you can also use run.py with --do_test to evaluate data.

Our training and evaluating commands are as follows:

1. NYT

train:

CUDA_VISIBLE_DEVICES=0 nohup python -u run.py \
--do_train \
--model_name NYT \
--rel_path data/NYT/rel2id.json \
--train_path data/NYT/train_triples.json \
--dev_path data/NYT/test_triples.json \
--bert_dir pretrained-bert/cased_L-12_H-768_A-12 \
--save_path ckpts/nyt.model \
--learning_rate 0.00005 \
--neg_samples 2 \
--epoch 200 \
--verbose 2 > nyt.log &

evaluate:

CUDA_VISIBLE_DEVICES=0 python run.py \
--do_test \
--model_name NYT \
--rel_path data/NYT/rel2id.json \
--test_path data/NYT/test_triples.json \
--bert_dir pretrained-bert/cased_L-12_H-768_A-12 \
--ckpt_path ckpts/nyt.model \
--max_len 512 \
--verbose 1

You can evaluate other data by specifying --test_path.

2. WebNLG

train:

CUDA_VISIBLE_DEVICES=0 nohup python -u run.py \
--do_train \
--model_name WebNLG \
--rel_path data/WebNLG/rel2id.json \
--train_path data/WebNLG/train_triples.json \
--dev_path data/WebNLG/test_triples.json \
--bert_dir pretrained-bert/cased_L-12_H-768_A-12 \
--save_path ckpts/webnlg.model \
--max_sample_triples 5 \
--neg_samples 5 \
--learning_rate 0.00005 \
--epoch 300 \
--verbose 2 > webnlg.log &

evaluate:

CUDA_VISIBLE_DEVICES=0 python run.py \
--do_test \
--model_name WebNLG \
--rel_path data/WebNLG/rel2id.json \
--test_path data/WebNLG/test_triples.json \
--bert_dir pretrained-bert/cased_L-12_H-768_A-12 \
--ckpt_path ckpts/webnlg.model \
--max_len 512 \
--verbose 1

You can evaluate other data by specifying --test_path.

3. NYT11-HRL

train:

CUDA_VISIBLE_DEVICES=0 nohup python -u run.py \
--do_train \
--model_name NYT11-HRL \
--rel_path data/NYT11-HRL/rel2id.json \
--train_path data/NYT11-HRL/train_triples.json \
--dev_path data/NYT11-HRL/test_triples.json \
--bert_dir pretrained-bert/cased_L-12_H-768_A-12 \
--save_path ckpts/nyt11hrl.model \
--learning_rate 0.00005 \
--neg_samples 1 \
--epoch 100 \
--verbose 2 > nyt11hrl.log &

evaluate:

CUDA_VISIBLE_DEVICES=0 python run.py \
--do_test \
--model_name NYT11-HRL \
--rel_path data/NYT/rel2id.json \
--test_path data/NYT11-HRL/test_triples.json \
--bert_dir pretrained-bert/cased_L-12_H-768_A-12 \
--ckpt_path ckpts/nyt11hrl.model \
--max_len 512 \
--verbose 1

Pre-trained Models

We released our pre-trained models for NYT, WebNLG, and NYT11-HRL datasets, and uploaded them to this repository via git-lfs.

You can download pre-trained models and then decompress them (ckpts.zip) to the ckpts folder.

To use the pre-trained models, you need to download our processed datasets and specify --rel_path to our processed rel2id.json.

To evaluate by the pre-trained models, you can use above commands and specify --ckpt_path to specific model.

In our setting, NYT, WebNLG, and NYT11-HRL achieve the best result on Epoch 86, 174, and 23 respectively.

1. NYT

click to show the result screenshot.

2. WebNLG

click to show the result screenshot.

3. NYT11-HRL

click to show the result screenshot.

Citation

If you use our code in your research, please cite our work:

@inproceedings{li-etal-2021-tdeer,
    title = "{TDEER}: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations",
    author = "Li, Xianming  and
      Luo, Xiaotian  and
      Dong, Chenghao  and
      Yang, Daichuan  and
      Luan, Beidi  and
      He, Zhen",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.635",
    pages = "8055--8064",
}

Acknowledgment

Some of our codes are inspired by weizhepei/CasRel. Thanks for their excellent work.

Contact

If you have any questions about the paper or code, you can

  1. create an issue in this repo;
  2. feel free to contact 1st author at [email protected] / [email protected], I will reply ASAP.
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
Synthesizing Long-Term 3D Human Motion and Interaction in 3D in CVPR2021

Long-term-Motion-in-3D-Scenes This is an implementation of the CVPR'21 paper "Synthesizing Long-Term 3D Human Motion and Interaction in 3D". Please ch

Jiashun Wang 76 Dec 13, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as

Kentaro Wada 218 Oct 27, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
Speech-Emotion-Analyzer - The neural network model is capable of detecting five different male/female emotions from audio speeches. (Deep Learning, NLP, Python)

Speech Emotion Analyzer The idea behind creating this project was to build a machine learning model that could detect emotions from the speech we have

Mitesh Puthran 965 Dec 24, 2022
TVNet: Temporal Voting Network for Action Localization

TVNet: Temporal Voting Network for Action Localization This repo holds the codes of paper: "TVNet: Temporal Voting Network for Action Localization". P

hywang 5 Jul 26, 2022
fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

Ali Abdalla 34 Jan 05, 2023
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
A general-purpose, flexible, and easy-to-use simulator alongside an OpenAI Gym trading environment for MetaTrader 5 trading platform (Approved by OpenAI Gym)

gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator MtSim is a simulator for the MetaTrader 5 trading platform alongside an OpenAI Gym environment for rein

Mohammad Amin Haghpanah 184 Dec 31, 2022
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023
Pytorch implementation of MLP-Mixer with loading pre-trained models.

MLP-Mixer-Pytorch PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision with the function of loading official ImageNet pre-trained p

Qiushi Yang 2 Sep 29, 2022
Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

38 Aug 31, 2022
Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19) Official pytorch implementation of the paper: "SinGAN: Learning a Generative M

Tamar Rott Shaham 3.2k Dec 25, 2022
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks This repository contains a TensorFlow implementation of "

Jingwei Zheng 5 Jan 08, 2023