Official source code of Fast Point Transformer, CVPR 2022

Overview

Fast Point Transformer

Project Page | Paper

This repository contains the official source code and data for our paper:

Fast Point Transformer
Chunghyun Park, Yoonwoo Jeong, Minsu Cho, and Jaesik Park
POSTECH GSAI & CSE
CVPR, 2022, New Orleans.

An Overview of the proposed pipeline

Overview

This work introduces Fast Point Transformer that consists of a new lightweight self-attention layer. Our approach encodes continuous 3D coordinates, and the voxel hashing-based architecture boosts computational efficiency. The proposed method is demonstrated with 3D semantic segmentation and 3D detection. The accuracy of our approach is competitive to the best voxel based method, and our network achieves 129 times faster inference time than the state-of-the-art, Point Transformer, with a reasonable accuracy trade-off in 3D semantic segmentation on S3DIS dataset.

Citation

If you find our code or paper useful, please consider citing our paper:

@inproceedings{park2022fast,
 title={{Fast Point Transformer}},
 author={Chunghyun Park and Yoonwoo Jeong and Minsu Cho and Jaesik Park},
 booktitle={Proceedings of the {IEEE/CVF} Conference on Computer Vision and Pattern Recognition (CVPR)},
 year={2022}
}

Experiments

1. S3DIS Area 5 test

We denote MinkowskiNet42 trained with this repository as MinkowskiNet42. We use voxel size 4cm for both MinkowskiNet42 and our Fast Point Transformer.

Model Latency (sec) mAcc (%) mIoU (%) Reference
PointTransformer 18.07 76.5 70.4 Codes from the authors
MinkowskiNet42 0.08 74.1 67.2 Checkpoint
  + rotation average 0.66 75.1 69.0 -
FastPointTransformer 0.14 76.6 69.2 Checkpoint
  + rotation average 1.13 77.6 71.0 -

2. ScanNetV2 validation

Model Voxel Size mAcc (%) mIoU (%) Reference
MinkowskiNet42 2cm - 72.2 Official GitHub
MinkowskiNet42 2cm 81.4 72.1 Checkpoint
FastPointTransformer 2cm 81.2 72.5 Checkpoint
MinkowskiNet42 5cm 76.3 67.0 Checkpoint
FastPointTransformer 5cm 78.9 70.0 Checkpoint
MinkowskiNet42 10cm 70.8 60.7 Checkpoint
FastPointTransformer 10cm 76.1 66.5 Checkpoint

Installation

This repository is developed and tested on

  • Ubuntu 18.04 and 20.04
  • Conda 4.11.0
  • CUDA 11.1
  • Python 3.8.13
  • PyTorch 1.7.1 and 1.10.0
  • MinkowskiEngine 0.5.4

Environment Setup

You can install the environment by using the provided shell script:

~$ git clone --recursive [email protected]:POSTECH-CVLab/FastPointTransformer.git
~$ cd FastPointTransformer
~/FastPointTransformer$ bash setup.sh fpt
~/FastPointTransformer$ conda activate fpt

Training & Evaluation

First of all, you need to download the datasets (ScanNetV2 and S3DIS), and preprocess them as:

(fpt) ~/FastPointTransformer$ python src/data/preprocess_scannet.py # you need to modify the data path
(fpt) ~/FastPointTransformer$ python src/data/preprocess_s3dis.py # you need to modify the data path

And then, locate the provided meta data of each dataset (src/data/meta_data) with the preprocessed dataset following the structure below:

${data_dir}
├── scannetv2
│   ├── meta_data
│   │   ├── scannetv2_train.txt
│   │   ├── scannetv2_val.txt
│   │   └── ...
│   └── scannet_processed
│       ├── train
│       │   ├── scene0000_00.ply
│       │   ├── scene0000_01.ply
│       │   └── ...
│       └── test
└── s3dis
    ├── meta_data
    │   ├── area1.txt
    │   ├── area2.txt
    │   └── ...
    └── s3dis_processed
        ├── Area_1
        │   ├── conferenceRoom_1.ply
        │   ├── conferenceRoom_2.ply
        │   └── ...
        ├── Area_2
        └── ...

After then, you can train and evalaute a model by using the provided python scripts (train.py and eval.py) with configuration files in the config directory. For example, you can train and evaluate Fast Point Transformer with voxel size 4cm on S3DIS dataset via the following commands:

(fpt) ~/FastPointTransformer$ python train.py config/s3dis/train_fpt.gin
(fpt) ~/FastPointTransformer$ python eval.py config/s3dis/eval_fpt.gin {checkpoint_file} # use -r option for rotation averaging.

Consistency Score

You need to generate predictions via the following command:

(fpt) ~/FastPointTransformer$ python -m src.cscore.prepare {checkpoint_file} -m {model_name} -v {voxel_size} # This takes hours.

Then, you can calculate the consistency score (CScore) with:

(fpt) ~/FastPointTransformer$ python -m src.cscore.calculate {prediction_dir} # This takes seconds.

3D Object Detection using VoteNet

Please refer this repository.

Acknowledgement

Our code is based on the MinkowskiEngine. We also thank Hengshuang Zhao for providing the code of Point Transformer. If you use our model, please consider citing them as well.

A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters. Overview This project is a Torch implementation for our CVPR 2016 paper

Jianwei Yang 278 Dec 25, 2022
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

PeaceWord 6 Nov 22, 2022
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking

WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un

25 Jan 01, 2023
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
Pytorch-Swin-Unet-V2 - a modified version of Swin Unet based on Swin Transfomer V2

Swin Unet V2 Swin Unet V2 is a modified version of Swin Unet arxiv based on Swin

Chenxu Peng 26 Dec 03, 2022
Fast and Easy Infinite Neural Networks in Python

Neural Tangents ICLR 2020 Video | Paper | Quickstart | Install guide | Reference docs | Release notes Overview Neural Tangents is a high-level neural

Google 1.9k Jan 09, 2023
Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Alessandro Berti 4 Aug 24, 2022
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch.

MPDL---TODO This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch. Ci

CodebaseLi 3 Nov 27, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Trans

Zhuang AI Group 105 Dec 06, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022