TrackFormer: Multi-Object Tracking with Transformers

Overview

TrackFormer: Multi-Object Tracking with Transformers

This repository provides the official implementation of the TrackFormer: Multi-Object Tracking with Transformers paper by Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixe and Christoph Feichtenhofer. The codebase builds upon DETR, Deformable DETR and Tracktor.

As the paper is still under submission this repository will continuously be updated and might at times not reflect the current state of the arXiv paper.

MOT17-03-SDP MOTS20-07

Abstract

The challenging task of multi-object tracking (MOT) requires simultaneous reasoning about track initialization, identity, and spatiotemporal trajectories. We formulate this task as a frame-to-frame set prediction problem and introduce TrackFormer, an end-to-end MOT approach based on an encoder-decoder Transformer architecture. Our model achieves data association between frames via attention by evolving a set of track predictions through a video sequence. The Transformer decoder initializes new tracks from static object queries and autoregressively follows existing tracks in space and time with the new concept of identity preserving track queries. Both decoder query types benefit from self- and encoder-decoder attention on global frame-level features, thereby omitting any additional graph optimization and matching or modeling of motion and appearance. TrackFormer represents a new tracking-by-attention paradigm and yields state-of-the-art performance on the task of multi-object tracking (MOT17) and segmentation (MOTS20).

TrackFormer casts multi-object tracking as a set prediction problem performing joint detection and tracking-by-attention. The architecture consists of a CNN for image feature extraction, a Transformer encoder for image feature encoding and a Transformer decoder which applies self- and encoder-decoder attention to produce output embeddings with bounding box and class information.

Installation

We refer to our docs/INSTALL.md for detailed installation instructions.

Train TrackFormer

We refer to our docs/TRAIN.md for detailed training instructions.

Evaluate TrackFormer

In order to evaluate TrackFormer on a multi-object tracking dataset, we provide the src/track.py script which supports several datasets and splits interchangle via the dataset_name argument (See src/datasets/tracking/factory.py for an overview of all datasets.) The default tracking configuration is specified in cfgs/track.yaml. To facilitate the reproducibility of our results, we provide evaluation metrics for both the train and test set.

MOT17

Private detections

python src/track.py reid
MOT17 MOTA IDF1 MT ML FP FN ID SW.
Train 68.1 67.6 816 207 33549 71937 1935
Test 65.0 63.9 1074 324 70443 123552 3528

Public detections (DPM, FRCNN, SDP)

python src/track.py with \
    reid \
    public_detections=min_iou_0_5 \
    obj_detect_checkpoint_file=models/mots20_train_masks/checkpoint.pth
MOT17 MOTA IDF1 MT ML FP FN ID SW.
Train 67.2 66.9 663 294 14640 94122 1866
Test 62.5 60.7 702 632 32828 174921 3917

MOTS20

python src/track.py with \
    dataset_name=MOTS20-ALL \
    obj_detect_checkpoint_file=models/mots20_train_masks/checkpoint.pth

Our tracking script only applies MOT17 metrics evaluation but outputs MOTS20 mask prediction files. To evaluate these download the official MOTChallengeEvalKit.

MOTS20 sMOTSA IDF1 FP FN IDs
Train -- -- -- -- --
Test 54.9 63.6 2233 7195 278

Demo

To facilitate the application of TrackFormer, we provide a demo interface which allows for a quick processing of a given video sequence.

ffmpeg -i data/snakeboard/snakeboard.mp4 -vf fps=30 data/snakeboard/%06d.png

python src/track.py with \
    dataset_name=DEMO \
    data_root_dir=data/snakeboard \
    output_dir=data/snakeboard \
    write_images=pretty
Snakeboard demo

Publication

If you use this software in your research, please cite our publication:

@InProceedings{meinhardt2021trackformer,
    title={TrackFormer: Multi-Object Tracking with Transformers},
    author={Tim Meinhardt and Alexander Kirillov and Laura Leal-Taixe and Christoph Feichtenhofer},
    year={2021},
    eprint={2101.02702},
    archivePrefix={arXiv},
}
Owner
Tim Meinhardt
Ph.D. candidate at the Dynamic Vision and Learning Group, TU Munich
Tim Meinhardt
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set

Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje

Robert Krug 3 Feb 06, 2022
Model of an AI powered sign language interpreter.

TEXT AND SPEECH TO SIGN LANGUAGE. A web application which takes in text or live audio speech recording as input, converts and displays the relevant Si

Mark Gatere 4 Mar 30, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 864 Dec 30, 2022
Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch

Lie Transformer - Pytorch (wip) Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch. Only the SE3 version will be present in thi

Phil Wang 78 Oct 26, 2022
A package related to building quasi-fibration symmetries

qf A package related to building quasi-fibration symmetries. If you'd like to learn more about how it works, see the brief explanation and References

Paolo Boldi 1 Dec 01, 2021
Changing the Mind of Transformers for Topically-Controllable Language Generation

We will first introduce the how to run the IPython notebook demo by downloading our pretrained models. Then, we will introduce how to run our training and evaluation code.

IESL 20 Dec 06, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
Caffe-like explicit model constructor. C(onfig)Model

cmodel Caffe-like explicit model constructor. C(onfig)Model Installation pip install git+https://github.com/bonlime/cmodel Usage In order to allow usi

1 Feb 18, 2022
Yet another video caption

Yet another video caption

Fan Zhimin 5 May 26, 2022
AdaFocus V2: End-to-End Training of Spatial Dynamic Networks for Video Recognition

AdaFocusV2 This repo contains the official code and pre-trained models for AdaFo

79 Dec 26, 2022
Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
Semi-supervised learning for object detection

Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object

Google Research 348 Dec 25, 2022
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions

Natural Posterior Network This repository provides the official implementation o

Oliver Borchert 54 Dec 06, 2022
Code for the Convolutional Vision Transformer (ConViT)

ConViT : Vision Transformers with Convolutional Inductive Biases This repository contains PyTorch code for ConViT. It builds on code from the Data-Eff

Facebook Research 418 Jan 06, 2023